Remotely control your robot via cmd_vel topic
Input: 3x axis analog joystick (X + Y + Z/Twist)
Output: ROS node (ROS2) that publish topic /cmd_vel with msg.type twist_stamped
Angular
=X-axis
= Pull stick Left/RightLinear
=Y-axis
= Pull stick Up/DownTwist
=Z-axis
= Turn/Twist stick (Not used right now)
- Once: Read/Set all the parameters
- Repeatedly: Read analog joystick via ADC
- Repeatedly: Transform indata to a +/-100% values
- Repeatedly: Map where the stick are => Depending om location, then adjust behivaiur.
- Repeatedly: Transform X, Y movment into Linear & Angaular according to twist msg.type
- Repeatedly: Publish ros-topic
flowchart TD
Init --> Read_A/D
Joystick --> |0-3.3V|Read_A/D
Read_A/D --> Joystick
Read_A/D --> |0-32000|Transform
Transform --> |-100..+100|Map
Map --> |-100..+100|Twistify
Twistify --> |m/s + rad/s|Publish
Publish --> |Loop|Read_A/D
- Single Board Computer(SBC): Raspberry Pi 3/4
- A/D converter: KY-053 Analog Digital Converter (ADS1115, 16-bit) via default I2C adr.=
0x48
- Joystick: 3x analog 10K resistors. X-, Y- and Twist-axis.
🌐Google tips to find/order Joystick from eBay/AliExpress/Wish/Amazon/...
1) "3-axis analog joystick"
2) "XYZ analog joystick"
...do the ROS2-installation stuff...
Prepared by adding additional, i2c communication, Linux-software-packages
Ubuntu Shell
~$ sudo apt install i2c-tools
~$ sudo apt install python3-pip
~$ sudo pip3 install smbus2
~$ sudo pip3 install adafruit-ads1x15
~$ sudo i2cdetect -y 1
0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --
$ sudo chmod a+rw /dev/i2c-1
Create a ROS2 workspace (in my exampel '~/ws_ros2/')
Dowload ROS2 package by using 'git clone'
🤔There is probably better tutorials how to do this...
...but here is how I made it.
Ubuntu Shell
~$ mkdir -p ~/ws_ros2/src
~$ cd ~/ws_ros2/src
~/ws_ros2/src$ git clone https://github.com/Pet-Series/pet_ros2_joystick_pkg.git
~/ws_ros2/src$ cd ..
~/ws_ros2$ colcon build --symlink-install
~/ws_ros2$ source /opt/ros/galactic/setup.bash
~/ws_ros2$ source ./install/setup.bash
Ubuntu Shell
~/ws_ros2$ ros2 run pet_ros2_joystick_pkg pet_joystick_node
[INFO] [1645471061.181057770] [joystick_node]: joystick_node has started
[INFO] [1645471061.183638877] [joystick_node]: - A/D: 0x48, X-chn: 3, Y-chn: 1, Twist-chn: 2
[INFO] [1645471061.186369983] [joystick_node]: - A/D sampling: 10.0Hz, Topic: twist/cmd_vel
The pet_joystick_node
parallel publishes three variants of topics messages.
/raw/joystick
using msg.type Joy from sensor_msgs.msg/twist/cmd_vel
using msg.type Twist from geometry_msgs.msg/twist_stamped/cmd_vel
using msg.type TwistStamped from geometry_msgs.msg
Ubuntu Shell
~/ws_ros2$ ros2 topic list
/raw/joystick
/twist/cmd_vel
/twist_stamped/cmd_vel
Save a "dump" of all the parameters that pet_joystick_node
uses.
Ubuntu Shell
~/ws_ros2/data$ ros2 param dump /joystick_node
Saving to: ./joystick_node.yaml
In the following list you can see all the parameters that pet_joystick_node
uses. And their default values.
./joystick_node.yaml
/joystick_node:
ros__parameters:
adc_i2c_address: '0x48'
adc_x_channel: 3
adc_y_channel: 1
adc_z_channel: 2
angular_only: 30
angular_scaling: 0.01
cycle_timer: 0.1
cycles_publish: 10
granularity: 5
linear_scaling: 0.02
ros_topic_raw: raw/joystick
ros_topic_twist: twist/cmd_vel
ros_topic_twist_stamped: twist_stamped/cmd_vel
x_polarity: -1
y_polarity: 1
z_polarity: -1
zero_range_max: 5
zero_range_min: -5
Objective is to control the simulated turtle on screen by using pet_joystick_node
.
🤔Most probably have you already the TurtleSim installed as a part of ROS2.
...I will not cover that here!
Initiate ROS2 & launch TurtleSim
Ubuntu Shell #1
~/ws_ros2$ source /opt/ros/galactic/setup.bash
~/ws_ros2$ ros2 run turtlesim turtlesim_node
Show/list used ros-topics that TurtleSim using and look for the "cmd_vel"
Ubuntu Shell #2
~/ws_ros2$ ros2 topic list
/turtle1/cmd_vel <- This is the topic name that TurtleSim using.
/turtle1/color_sensor
/turtle1/pose
~/ws_ros2$
Set the output ros-topic name for the pet_joystick_node
to match the topic-name that TurtleSim using = /turtle1/cmd_vel
One way to do this is set the parameter -p ros_topic_twist:=turtle1/cmd_vel
when launching pet_joystick_node
Ubuntu Shell #3
~/ws_ros2$ ros2 run pet_ros2_joystick_pkg pet_joystick_node --ros-args -p ros_topic_twist:=turtle1/cmd_vel
[INFO] [1645466678.951719930] [joystick_node]: joystick_node has started
[INFO] [1645466678.954457277] [joystick_node]: - A/D: 0x48, X-chn: 3, Y-chn: 1, Twist-chn: 2
[INFO] [1645466678.957577325] [joystick_node]: - A/D sampling: 10.0Hz, Topic: turtle1/cmd_vel
The same test case as above - TurtleSim Node + Joystick Node.
But this time we launch in one step, via a .launch
file.
Ubuntu Shell
~/ws_ros2$ $ ros2 launch pet_ros2_joystick_pkg turtle_joystick.launch.py
[INFO] [launch]: All log files can be found below /home/ubuntu/.ros/log/2022-03-06-21-16-49-679386-raspikull8-178148
[INFO] [launch]: Default logging verbosity is set to INFO
[INFO] [turtlesim_node-1]: process started with pid [178150]
[INFO] [pet_joystick_node-2]: process started with pid [178152]
[turtlesim_node-1] [INFO] [1646597810.933757565] [turtlesim]: Starting turtlesim with node name /turtlesim
[turtlesim_node-1] [INFO] [1646597810.943631886] [turtlesim]: Spawning turtle [turtle1] at x=[5,544445], y=[5,544445], theta=[0,000000]
[pet_joystick_node-2] [INFO] [1646597813.077173940] [joystick_node]: joystick_node has started
[pet_joystick_node-2] [INFO] [1646597813.079749163] [joystick_node]: - A/D: 0x48, X-chn: 3, Y-chn: 1, Z-chn: 2
[pet_joystick_node-2] [INFO] [1646597813.082246831] [joystick_node]: - A/D sampling: 10.0Hz, Topic: turtle1/cmd_vel
~/ws_ros2$
If the target system is based on ROS1 (some legacy robot...). Then this is how you bridge the ROS2 based Joystick_node over to a ROS1 based target system (in this example running TurtleSim under ROS1).