forked from Dingseewhole/Robust_Deconfounder_master
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDR_RD.py
273 lines (237 loc) · 14.6 KB
/
DR_RD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import numpy as np
import random
import time
import torch
import torch.nn as nn
from model import *
import arguments
import utils.load_dataset
import utils.data_loader
import utils.metrics
from utils.early_stop import EarlyStopping, Stop_args
def setup_seed(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
def para(args):
if args.dataset == 'yahooR3':
args.training_args = {'batch_size': 1024, 'epochs': 3000, 'patience': 60, 'block_batch': [6000, 500]}
args.base_model_args = {'emb_dim': 10, 'learning_rate': 5e-7, 'weight_decay': 1}
args.imputation_model_args = {'emb_dim': 10, 'learning_rate': 5e-7, 'weight_decay': 1}
args.base_dr_lr = 5e-5
args.imp_dr_lr = 5e-5
args.base_dr_freq = 3
args.imp_dr_freq = 3
args.base_freq = 1
args.Gama = [10, 10]
elif args.dataset == 'coat':
args.training_args = {'batch_size': 128, 'epochs': 5000, 'patience': 60, 'block_batch': [64, 64]}
args.base_model_args = {'emb_dim': 10, 'learning_rate': 1e-5, 'weight_decay': 10}
args.imputation_model_args = {'emb_dim': 10, 'learning_rate': 5e-5, 'weight_decay': 10}
args.base_dr_lr = 5e-3
args.imp_dr_lr = 5e-3
args.base_dr_freq = 100
args.imp_dr_freq = 20
args.base_freq = 1
args.Gama = [3, 3]
else:
print('invalid arguments')
os._exit()
def both_test(loader, model_name, testname, K = 5, dataset = "None", device='cuda'):
test_users = torch.empty(0, dtype=torch.int64).to(device)
test_items = torch.empty(0, dtype=torch.int64).to(device)
test_pre_ratings = torch.empty(0).to(device)
test_ratings = torch.empty(0).to(device)
ndcg_ratings = torch.empty(0).to(device)
ndcg_item = torch.empty(0).to(device)
ut_dict={}
pt_dict={}
for batch_idx, (users, items, ratings) in enumerate(loader):
pre_ratings = model_name(users, items)
for i,u in enumerate(users):
try:
ut_dict[u.item()].append(ratings[i].item())
pt_dict[u.item()].append(pre_ratings[i].item())
except:
ut_dict[u.item()]=[ratings[i].item()]
pt_dict[u.item()]=[pre_ratings[i].item()]
test_users = torch.cat((test_users, users))
test_items = torch.cat((test_items, items))
test_pre_ratings = torch.cat((test_pre_ratings, pre_ratings))
test_ratings = torch.cat((test_ratings, ratings))
pos_mask = torch.where(ratings>=torch.ones_like(ratings), torch.arange(0,len(ratings)).float().to(device), 100*torch.ones_like(ratings))
pos_ind = pos_mask[pos_mask != 100].long()
users_ndcg = torch.index_select(users, 0, pos_ind)
test_results = utils.metrics.evaluate(test_pre_ratings, test_ratings, ['MSE', 'NLL', 'AUC', 'Recall_Precision_NDCG@'], users=test_users, items=test_items, NDCG=None, UAUC=(ut_dict, pt_dict))
U = test_results['UAUC']
N = test_results['NDCG']
print(f'The performance of Robust Deconfounder-Doubly Robust (RD-DR) on uniform data is: UAUC = {U} NDCG@5 = {N}')
return test_results
def train_and_eval(train_data, unif_train_data, val_data, test_data, n_user, n_item, args, device = 'cuda'):
base_model_args, imputation_model_args, training_args, base_dr_lr, imp_dr_lr, base_freq, base_dr_freq, imp_dr_freq = args.base_model_args, args.imputation_model_args, args.training_args, args.base_dr_lr, args.imp_dr_lr, args.base_freq, args.base_dr_freq, args.imp_dr_freq
train_dense = train_data.to_dense()
if args.dataset == 'coat' or args.dataset == 'kuai':
train_dense_norm = torch.where(train_dense<-1*torch.ones_like(train_dense), -1*torch.ones_like(train_dense), train_dense)
train_dense_norm = torch.where(train_dense_norm>torch.ones_like(train_dense_norm), torch.ones_like(train_dense_norm), train_dense_norm)
del train_dense
train_dense = train_dense_norm
# build data_loader.
train_loader = utils.data_loader.Block(train_data, u_batch_size=training_args['block_batch'][0], i_batch_size=training_args['block_batch'][1], device=device)
val_loader = utils.data_loader.DataLoader(utils.data_loader.Interactions(val_data), batch_size=training_args['batch_size'], shuffle=False, num_workers=0)
test_loader = utils.data_loader.DataLoader(utils.data_loader.Interactions(test_data), batch_size=training_args['batch_size'], shuffle=False, num_workers=0)
def Naive_Bayes_Propensity(train, unif):
P_Oeq1 = train._nnz() / (train.size()[0] * train.size()[1])
train._values()[train._values()<torch.tensor([-1.0]).to(device)]=-1.0
y_unique = torch.unique(train._values())
P_y_givenO = torch.zeros(y_unique.shape).to(device)
P_y = torch.zeros(y_unique.shape).to(device)
for i in range(len(y_unique)):
P_y_givenO[i] = torch.sum(train._values() == y_unique[i]) / torch.sum(torch.ones(train._values().shape).to(device))
P_y[i] = torch.sum(unif._values() == y_unique[i]) / torch.sum(torch.ones(unif._values().shape).to(device))
Propensity = P_y_givenO * P_Oeq1 / P_y
Propensity=Propensity*(torch.ones((n_item,2)).to(device))
return y_unique, Propensity
y_unique, Propensity = Naive_Bayes_Propensity(train_data, unif_train_data)
InvP = torch.reciprocal(Propensity)
lowBound = torch.ones_like(InvP) + (InvP-torch.ones_like(InvP)) / (torch.ones_like(InvP)*args.Gama[0])
upBound = torch.ones_like(InvP) + (InvP-torch.ones_like(InvP)) * (torch.ones_like(InvP)*args.Gama[0])
base_model=MF_dr(n_user, n_item, upBound, lowBound, y_unique, InvP, dim=base_model_args['emb_dim'], dropout=0).to(device)
imputation_model=MF_dr(n_user, n_item, upBound, lowBound, y_unique, InvP, dim=imputation_model_args['emb_dim'], dropout=0).to(device)
base_dr_parameters, base_parameters = [], []
for pname, p in base_model.named_parameters():
if (pname in ['invP.weight']):
base_dr_parameters += [p]
else:
base_parameters += [p]
imp_dr_parameters,imputation_parameters=[],[]
for pname, p in imputation_model.named_parameters():
if (pname in ['invP.weight']):
imp_dr_parameters += [p]
else:
imputation_parameters+=[p]
base_optimizer = torch.optim.SGD([{'params':base_parameters, 'lr':base_model_args['learning_rate'], 'weight_decay':0}])
base_dr_optimizer = torch.optim.SGD([{'params':base_dr_parameters, 'lr':base_dr_lr, 'weight_decay':0}])
imputation_optimizer = torch.optim.SGD([{'params':imputation_parameters, 'lr':imputation_model_args['learning_rate'], 'weight_decay':0}])
imp_dr_optimizer=torch.optim.SGD([{'params':imp_dr_parameters, 'lr':imp_dr_lr, 'weight_decay':0}])
# loss_criterion
none_criterion = nn.MSELoss(reduction='none')
sum_criterion = nn.MSELoss(reduction='sum')
# begin training
stopping_args = Stop_args(patience=training_args['patience'], max_epochs=training_args['epochs'])
early_stopping = EarlyStopping(base_model, **stopping_args)
early_stopping_imp = EarlyStopping(imputation_model, **stopping_args)
# fitlog.add_best_metric({"bias_val": {"Earlystop": 0}})
for epo in range(1,early_stopping.max_epochs+1):
training_loss = 0
if epo % base_dr_freq == 0:
for u_batch_idx, users in enumerate(train_loader.User_loader):
for i_batch_idx, items in enumerate(train_loader.Item_loader):
# step 2(optional): every dr_freq epochs, update inverse propensity scores
base_model.train()
users_train, items_train, y_train = train_loader.get_batch(users, items)
if args.dataset == 'coat':
y_train = torch.where(y_train < -1 * torch.ones_like(y_train), -1 * torch.ones_like(y_train), y_train)
y_train = torch.where(y_train > 1 * torch.ones_like(y_train), torch.ones_like(y_train), y_train)
g_obs = imputation_model(users_train, items_train)
base_max_loss = base_model.base_dr_loss(users_train, items_train, y_train, g_obs, none_criterion)
base_dr_optimizer.zero_grad()
base_max_loss.backward()
base_dr_optimizer.step()
base_model.update_dr()
imputation_model.invP.weight.data=base_model.invP.weight.data
if epo % imp_dr_freq == 0:
for u_batch_idx, users in enumerate(train_loader.User_loader):
for i_batch_idx, items in enumerate(train_loader.Item_loader):
imputation_model.train()
users_train, items_train, y_train = train_loader.get_batch(users, items)
if args.dataset == 'coat':
y_train = torch.where(y_train < -1 * torch.ones_like(y_train), -1 * torch.ones_like(y_train), y_train)
y_train = torch.where(y_train > 1 * torch.ones_like(y_train), torch.ones_like(y_train), y_train)
y_hat=base_model(users_train, items_train)
imp_max_loss=imputation_model.imp_dr_loss(users_train, items_train, y_train, y_hat, none_criterion)
imp_dr_optimizer.zero_grad()
imp_max_loss.backward()
imp_dr_optimizer.step()
imputation_model.update_dr()
base_model.invP.weight.data=imputation_model.invP.weight.data
if epo % base_freq == 0:
for u_batch_idx, users in enumerate(train_loader.User_loader):
for i_batch_idx, items in enumerate(train_loader.Item_loader):
users_train, items_train, y_train = train_loader.get_batch(users, items)
if args.dataset == 'coat':
y_train = torch.where(y_train < -1 * torch.ones_like(y_train), -1 * torch.ones_like(y_train), y_train)
y_train = torch.where(y_train > 1 * torch.ones_like(y_train), torch.ones_like(y_train), y_train)
# step 1: update imputation_model
imputation_model.train()
y_hat=base_model(users_train, items_train)
loss_imp = imputation_model.imp_model_loss(users_train, items_train, y_train, y_hat, none_criterion) + imputation_model_args['weight_decay'] * imputation_model.l2_norm(users_train, items_train)
imputation_optimizer.zero_grad()
loss_imp.backward()
imputation_optimizer.step()
# step 3: update base_model
base_model.train()
# all pair data in this block
all_pair = torch.cartesian_prod(users, items)
users_all, items_all = all_pair[:,0], all_pair[:,1]
y_hat_all = base_model(users_all, items_all)
y_hat_all_detach = torch.detach(y_hat_all)
g_all = imputation_model(users_all, items_all)
loss_all = sum_criterion(y_hat_all, g_all + y_hat_all_detach) # sum(e_hat)
g_obs = imputation_model(users_train, items_train)
loss_obs = base_model.base_model_loss(users_train, items_train, y_train, g_obs, none_criterion)
min_loss = loss_all + loss_obs + base_model_args['weight_decay'] * base_model.l2_norm(users_all, items_all)
base_optimizer.zero_grad()
min_loss.backward()
base_optimizer.step()
if epo % 20 == 0:
base_model.eval()
with torch.no_grad():
# train metrics
train_pre_ratings = torch.empty(0).to(device)
train_ratings = torch.empty(0).to(device)
for u_batch_idx, users in enumerate(train_loader.User_loader):
for i_batch_idx, items in enumerate(train_loader.Item_loader):
users_train, items_train, y_train = train_loader.get_batch(users, items)
pre_ratings = base_model(users_train, items_train)
train_pre_ratings = torch.cat((train_pre_ratings, pre_ratings))
train_ratings = torch.cat((train_ratings, y_train))
# validation metrics
val_pre_ratings = torch.empty(0).to(device)
val_ratings = torch.empty(0).to(device)
for batch_idx, (users, items, ratings) in enumerate(val_loader):
pre_ratings = base_model(users, items)
val_pre_ratings = torch.cat((val_pre_ratings, pre_ratings))
val_ratings = torch.cat((val_ratings, ratings))
train_results = utils.metrics.evaluate(train_pre_ratings, train_ratings, ['MSE', 'NLL'])
val_results = utils.metrics.evaluate(val_pre_ratings, val_ratings, ['MSE', 'NLL', 'AUC'])
print('Epoch: {0:2d} / {1}, Traning: {2}, Validation: {3}'.
format(epo, training_args['epochs'],
' '.join([key + ':' + '%.3f' % train_results[key] for key in train_results]),
' '.join([key + ':' + '%.3f' % val_results[key] for key in val_results])))
early_stopping_imp.check([val_results['AUC']], epo)
if early_stopping.check([val_results['AUC']], epo):
break
# restore the best model
print('Loading {}th epoch'.format(early_stopping.best_epoch))
# print(base_model.invP.weight.data)
base_model.load_state_dict(early_stopping.best_state)
imputation_model.load_state_dict(early_stopping_imp.best_state)
val_pre_ratings = torch.empty(0).to(device)
val_ratings = torch.empty(0).to(device)
for batch_idx, (users, items, ratings) in enumerate(val_loader):
pre_ratings = base_model(users, items)
val_pre_ratings = torch.cat((val_pre_ratings, pre_ratings))
val_ratings = torch.cat((val_ratings, ratings))
test_results = both_test(test_loader, base_model, ('mm', 'DR', 'unbias'), K=5, dataset=args.dataset, device=device)
val_results = utils.metrics.evaluate(val_pre_ratings, val_ratings, ['MSE', 'NLL', 'AUC'])
return val_results,test_results
if __name__ == "__main__":
args = arguments.parse_args()
para(args)
setup_seed(args.seed)
bias_train, unif_train, unif_validation, unif_test, m, n = utils.load_dataset.load_dataset(data_name=args.dataset, type = 'explicit', seed = args.seed, device='cuda')
train_and_eval(bias_train, unif_train, unif_validation, unif_test, m, n, args)
# fitlog.finish()