forked from Dingseewhole/Robust_Deconfounder_master
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIPS_BRD.py
218 lines (191 loc) · 12.1 KB
/
IPS_BRD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import numpy as np
import random
import time
import torch
import torch.nn as nn
from model import *
import arguments
import utils.load_dataset
import utils.data_loader
import utils.metrics
from utils.early_stop import EarlyStopping, Stop_args
import debugpy
def setup_seed(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
def para(args):
if args.dataset == 'yahooR3':
args.training_args = {'batch_size': 1024, 'epochs': 500, 'patience': 5, 'block_batch': [6000, 500]}
args.base_model_args = {'emb_dim': 10, 'learning_rate': 1e-05, 'weight_decay': 0}
args.ips_lr = 0.5
args.Gama = [10, 8]
args.ips_freq = 30
args.base_freq = 1
elif args.dataset == 'coat':
args.training_args = {'batch_size': 128, 'epochs': 500, 'patience': 5, 'block_batch': [64, 64]}
args.base_model_args = {'emb_dim': 10, 'learning_rate': 0.001, 'weight_decay': 0.0001}
args.ips_lr = 0.5
args.Gama = [8, 10]
args.ips_freq = 10
args.base_freq = 1
else:
print('invalid arguments')
os._exit()
def both_test(loader, model_name, testname, K = 5, dataset = "None",device='cuda'):
test_users = torch.empty(0, dtype=torch.int64).to(device)
test_items = torch.empty(0, dtype=torch.int64).to(device)
test_pre_ratings = torch.empty(0).to(device)
test_ratings = torch.empty(0).to(device)
ndcg_ratings = torch.empty(0).to(device)
ndcg_item = torch.empty(0).to(device)
ut_dict={}
pt_dict={}
for batch_idx, (users, items, ratings) in enumerate(loader):
pre_ratings = model_name(users, items)
for i,u in enumerate(users):
try:
ut_dict[u.item()].append(ratings[i].item())
pt_dict[u.item()].append(pre_ratings[i].item())
except:
ut_dict[u.item()]=[ratings[i].item()]
pt_dict[u.item()]=[pre_ratings[i].item()]
test_users = torch.cat((test_users, users))
test_items = torch.cat((test_items, items))
test_pre_ratings = torch.cat((test_pre_ratings, pre_ratings))
test_ratings = torch.cat((test_ratings, ratings))
pos_mask = torch.where(ratings>=torch.ones_like(ratings), torch.arange(0,len(ratings)).float().to(device), 100*torch.ones_like(ratings))
pos_ind = pos_mask[pos_mask != 100].long()
users_ndcg = torch.index_select(users, 0, pos_ind)
test_results = utils.metrics.evaluate(test_pre_ratings, test_ratings, ['MSE', 'NLL', 'AUC', 'Recall_Precision_NDCG@'], users=test_users, items=test_items, NDCG=None, UAUC=(ut_dict, pt_dict))
U = test_results['UAUC']
N = test_results['NDCG']
print(f'The performance of BRD-IPS on uniform data is: UAUC = {U} NDCG@5 = {N}')
return test_results
def train_and_eval(train_data, unif_train_data, val_data, test_data, args, device = 'cuda'):
model_args, training_args, ips_lr = args.base_model_args, args.training_args, args.ips_lr
train_dense = train_data.to_dense()
# to ensure the range of training rating is [-1, 1]
if args.dataset == 'coat':
train_dense_norm = torch.where(train_dense<-1*torch.ones_like(train_dense), -1*torch.ones_like(train_dense), train_dense)
train_dense_norm = torch.where(train_dense_norm>torch.ones_like(train_dense_norm), torch.ones_like(train_dense_norm), train_dense_norm)
del train_dense
train_dense = train_dense_norm
n_user, n_item=train_dense.shape
# build data_loader.
train_loader = utils.data_loader.Block(train_data, u_batch_size=training_args['block_batch'][0], i_batch_size=training_args['block_batch'][1], device=device)
val_loader = utils.data_loader.DataLoader(utils.data_loader.Interactions(val_data), batch_size=training_args['batch_size'], shuffle=False, num_workers=0)
test_loader = utils.data_loader.DataLoader(utils.data_loader.Interactions(test_data), batch_size=training_args['batch_size'], shuffle=False, num_workers=0)
def Naive_Bayes_Propensity(train, unif):
P_Oeq1 = train._nnz() / (train.size()[0] * train.size()[1])
train._values()[train._values()<torch.tensor([-1.0]).to(device)]=-1.0
y_unique = torch.unique(train._values())
P_y_givenO = torch.zeros(y_unique.shape).to(device)
P_y = torch.zeros(y_unique.shape).to(device)
for i in range(len(y_unique)):
P_y_givenO[i] = torch.sum(train._values() == y_unique[i]) / torch.sum(torch.ones(train._values().shape).to(device))
P_y[i] = torch.sum(unif._values() == y_unique[i]) / torch.sum(torch.ones(unif._values().shape).to(device))
Propensity = P_y_givenO * P_Oeq1 / P_y
Propensity=Propensity*(torch.ones((n_item,2)).to(device))
return y_unique, Propensity
y_unique, Propensity = Naive_Bayes_Propensity(train_data, unif_train_data)
InvP = torch.reciprocal(Propensity)
args.Gama = torch.tensor(args.Gama).cuda()
lowBound = torch.ones_like(InvP) + (InvP-torch.ones_like(InvP)) / (torch.ones_like(InvP)*args.Gama)
upBound = torch.ones_like(InvP) + (InvP-torch.ones_like(InvP)) * (torch.ones_like(InvP)*args.Gama)
#lode the pre-train benchmark model, or you can use your own benchmark model
model_benchmark = MF_ips(n_user, n_item, upBound, lowBound, y_unique, InvP, dim=model_args['emb_dim'], dropout=0).to(device)
model_benchmark.load_state_dict(torch.load(f'./datasets/{args.dataset}/propensity_ips/base.pth.tar'), strict =False)#load原始ips
model = MF_ips(n_user, n_item, upBound, lowBound, y_unique, InvP, dim=model_args['emb_dim'], dropout=0).to(device)
model.load_state_dict(torch.load(f'./datasets/{args.dataset}/propensity_ips/base.pth.tar'), strict =False)
ips_parameters, base_parameters = [], []
for pname, p in model.named_parameters():
if (pname in ['invP.weight']):
ips_parameters += [p]
else:
base_parameters += [p]
optimizer_base = torch.optim.SGD([{'params':base_parameters, 'lr':model_args['learning_rate'], 'weight_decay':0}])
optimizer_ips = torch.optim.Adam([{'params':ips_parameters, 'lr':ips_lr, 'weight_decay':0}])
# loss_criterion
none_criterion = nn.MSELoss(reduction='none')
# begin training
stopping_args = Stop_args(patience=training_args['patience'], max_epochs=training_args['epochs'])
early_stopping = EarlyStopping(model, **stopping_args)
for epo in range(early_stopping.max_epochs+1):
training_loss = 0
for i in range(args.ips_freq):
for u_batch_idx, users in enumerate(train_loader.User_loader):
for i_batch_idx, items in enumerate(train_loader.Item_loader):
# loss of training set
model.train()
users_train, items_train, y_train = train_loader.get_batch(users, items)
if args.dataset == 'coat':
y_train = torch.where(y_train < -1 * torch.ones_like(y_train), -1 * torch.ones_like(y_train), y_train)
y_train = torch.where(y_train > 1 * torch.ones_like(y_train), torch.ones_like(y_train), y_train)
max_loss = model.ips_loss(users_train, items_train, y_train, none_criterion)
#dingsh 2020-01-10-s
benchmark_loss = model_benchmark.ips_loss(users_train, items_train, y_train, none_criterion)
final_maxloss = max_loss - benchmark_loss
print(f'Epoch: {epo * (args.ips_freq + args.base_freq) + i}/{early_stopping.max_epochs * (args.ips_freq + args.base_freq)} batch {u_batch_idx}.{i_batch_idx}')
optimizer_ips.zero_grad()
final_maxloss.backward()
optimizer_ips.step()
model.update_ips()
model_benchmark.invP.weight.data=model.invP.weight.data
for i in range(args.base_freq):
for u_batch_idx, users in enumerate(train_loader.User_loader):
for i_batch_idx, items in enumerate(train_loader.Item_loader):
# loss of training set
model.train()
users_train, items_train, y_train = train_loader.get_batch(users, items)
if args.dataset == 'coat':
y_train = torch.where(y_train < -1 * torch.ones_like(y_train), -1 * torch.ones_like(y_train), y_train)
y_train = torch.where(y_train > 1 * torch.ones_like(y_train), torch.ones_like(y_train), y_train)
min_loss = model.base_model_loss(users_train, items_train, y_train, none_criterion)
max_loss = model_benchmark.base_model_loss(users_train, items_train, y_train, none_criterion)
final_min_loss = min_loss - max_loss + model_args['weight_decay'] * model.l2_norm(users, items)
print(f'Epoch: {epo * (args.ips_freq + args.base_freq) + args.ips_freq + i}/{early_stopping.max_epochs * (args.ips_freq + args.base_freq)} batch {u_batch_idx}.{i_batch_idx}')
optimizer_base.zero_grad()
final_min_loss.backward()
# use the gradient normalization for stable learning
u_nd = model.user_latent.weight.grad/torch.norm(model.user_latent.weight.grad,2)
i_nd = model.item_latent.weight.grad/torch.norm(model.item_latent.weight.grad,2)
ub_nd = model.user_bias.weight.grad/torch.norm(model.user_bias.weight.grad,2)
ib_nd = model.item_bias.weight.grad/torch.norm(model.item_bias.weight.grad,2)
model.user_latent.weight.grad = torch.where(model.user_latent.weight.grad>args.clip*u_nd, args.clip*u_nd, model.user_latent.weight.grad)
model.item_latent.weight.grad = torch.where(model.item_latent.weight.grad>args.clip*i_nd, args.clip*i_nd, model.item_latent.weight.grad)
model.user_bias.weight.grad = torch.where(model.user_bias.weight.grad>args.clip*ub_nd, args.clip*ub_nd, model.user_bias.weight.grad)
model.item_bias.weight.grad = torch.where(model.item_bias.weight.grad>args.clip*ib_nd, args.clip*ib_nd, model.item_bias.weight.grad)
optimizer_base.step()
model.eval()
with torch.no_grad():
train_pre_ratings = torch.empty(0).to(device)
train_ratings = torch.empty(0).to(device)
for u_batch_idx, users in enumerate(train_loader.User_loader):
for i_batch_idx, items in enumerate(train_loader.Item_loader):
users_train, items_train, y_train = train_loader.get_batch(users, items)
pre_ratings = model(users_train, items_train)
train_pre_ratings = torch.cat((train_pre_ratings, pre_ratings))
train_ratings = torch.cat((train_ratings, y_train))
# validation metrics
val_pre_ratings = torch.empty(0).to(device)
val_ratings = torch.empty(0).to(device)
for batch_idx, (users, items, ratings) in enumerate(val_loader):
pre_ratings = model(users, items)
val_pre_ratings = torch.cat((val_pre_ratings, pre_ratings))
val_ratings = torch.cat((val_ratings, ratings))
val_results = utils.metrics.evaluate(val_pre_ratings, val_ratings, ['MSE', 'NLL', 'AUC'])
if early_stopping.check([val_results['AUC']], epo):
break
model.load_state_dict(early_stopping.best_state)
test_results = both_test(test_loader, model, ('CF', 'IPS', 'unbias'), K=5, dataset=args.dataset, device=device)
return 0
if __name__ == "__main__":
args = arguments.parse_args()
para(args)
setup_seed(args.seed)
bias_train, unif_train, unif_validation, unif_test, m, n = utils.load_dataset.load_dataset(data_name=args.dataset, type = 'explicit', seed = args.seed, device='cuda')
train_and_eval(bias_train, unif_train, unif_validation, unif_test, args)