-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathbivariate__polynomial_8h_source.html
246 lines (244 loc) · 38.3 KB
/
bivariate__polynomial_8h_source.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "https://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.9.1"/>
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<title>Point Cloud Library (PCL): pcl/common/bivariate_polynomial.h Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td id="projectalign" style="padding-left: 0.5em;">
<div id="projectname">Point Cloud Library (PCL)
 <span id="projectnumber">1.14.1-dev</span>
</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.9.1 -->
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:cf05388f2679ee054f2beb29a391d25f4e673ac3&dn=gpl-2.0.txt GPL-v2 */
var searchBox = new SearchBox("searchBox", "search",false,'Search','.html');
/* @license-end */
</script>
<script type="text/javascript" src="menudata.js"></script>
<script type="text/javascript" src="menu.js"></script>
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:cf05388f2679ee054f2beb29a391d25f4e673ac3&dn=gpl-2.0.txt GPL-v2 */
$(function() {
initMenu('',true,false,'search.php','Search');
$(document).ready(function() { init_search(); });
});
/* @license-end */</script>
<div id="main-nav"></div>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
</div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<div id="nav-path" class="navpath">
<ul>
<li class="navelem"><a class="el" href="dir_39ef148c3cf3468c290ae8c03b3c03af.html">pcl</a></li><li class="navelem"><a class="el" href="dir_474708a720ff06817ce2c12e28baf137.html">common</a></li> </ul>
</div>
</div><!-- top -->
<div class="header">
<div class="headertitle">
<div class="title">bivariate_polynomial.h</div> </div>
</div><!--header-->
<div class="contents">
<div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span> <span class="comment">/*</span></div>
<div class="line"><a name="l00002"></a><span class="lineno"> 2</span> <span class="comment"> * Software License Agreement (BSD License)</span></div>
<div class="line"><a name="l00003"></a><span class="lineno"> 3</span> <span class="comment"> *</span></div>
<div class="line"><a name="l00004"></a><span class="lineno"> 4</span> <span class="comment"> * Point Cloud Library (PCL) - www.pointclouds.org</span></div>
<div class="line"><a name="l00005"></a><span class="lineno"> 5</span> <span class="comment"> * Copyright (c) 2010-2012, Willow Garage, Inc.</span></div>
<div class="line"><a name="l00006"></a><span class="lineno"> 6</span> <span class="comment"> *</span></div>
<div class="line"><a name="l00007"></a><span class="lineno"> 7</span> <span class="comment"> * All rights reserved.</span></div>
<div class="line"><a name="l00008"></a><span class="lineno"> 8</span> <span class="comment"> *</span></div>
<div class="line"><a name="l00009"></a><span class="lineno"> 9</span> <span class="comment"> * Redistribution and use in source and binary forms, with or without</span></div>
<div class="line"><a name="l00010"></a><span class="lineno"> 10</span> <span class="comment"> * modification, are permitted provided that the following conditions</span></div>
<div class="line"><a name="l00011"></a><span class="lineno"> 11</span> <span class="comment"> * are met:</span></div>
<div class="line"><a name="l00012"></a><span class="lineno"> 12</span> <span class="comment"> *</span></div>
<div class="line"><a name="l00013"></a><span class="lineno"> 13</span> <span class="comment"> * * Redistributions of source code must retain the above copyright</span></div>
<div class="line"><a name="l00014"></a><span class="lineno"> 14</span> <span class="comment"> * notice, this list of conditions and the following disclaimer.</span></div>
<div class="line"><a name="l00015"></a><span class="lineno"> 15</span> <span class="comment"> * * Redistributions in binary form must reproduce the above</span></div>
<div class="line"><a name="l00016"></a><span class="lineno"> 16</span> <span class="comment"> * copyright notice, this list of conditions and the following</span></div>
<div class="line"><a name="l00017"></a><span class="lineno"> 17</span> <span class="comment"> * disclaimer in the documentation and/or other materials provided</span></div>
<div class="line"><a name="l00018"></a><span class="lineno"> 18</span> <span class="comment"> * with the distribution.</span></div>
<div class="line"><a name="l00019"></a><span class="lineno"> 19</span> <span class="comment"> * * Neither the name of the copyright holder(s) nor the names of its</span></div>
<div class="line"><a name="l00020"></a><span class="lineno"> 20</span> <span class="comment"> * contributors may be used to endorse or promote products derived</span></div>
<div class="line"><a name="l00021"></a><span class="lineno"> 21</span> <span class="comment"> * from this software without specific prior written permission.</span></div>
<div class="line"><a name="l00022"></a><span class="lineno"> 22</span> <span class="comment"> *</span></div>
<div class="line"><a name="l00023"></a><span class="lineno"> 23</span> <span class="comment"> * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS</span></div>
<div class="line"><a name="l00024"></a><span class="lineno"> 24</span> <span class="comment"> * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT</span></div>
<div class="line"><a name="l00025"></a><span class="lineno"> 25</span> <span class="comment"> * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS</span></div>
<div class="line"><a name="l00026"></a><span class="lineno"> 26</span> <span class="comment"> * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE</span></div>
<div class="line"><a name="l00027"></a><span class="lineno"> 27</span> <span class="comment"> * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,</span></div>
<div class="line"><a name="l00028"></a><span class="lineno"> 28</span> <span class="comment"> * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,</span></div>
<div class="line"><a name="l00029"></a><span class="lineno"> 29</span> <span class="comment"> * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;</span></div>
<div class="line"><a name="l00030"></a><span class="lineno"> 30</span> <span class="comment"> * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER</span></div>
<div class="line"><a name="l00031"></a><span class="lineno"> 31</span> <span class="comment"> * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT</span></div>
<div class="line"><a name="l00032"></a><span class="lineno"> 32</span> <span class="comment"> * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN</span></div>
<div class="line"><a name="l00033"></a><span class="lineno"> 33</span> <span class="comment"> * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE</span></div>
<div class="line"><a name="l00034"></a><span class="lineno"> 34</span> <span class="comment"> * POSSIBILITY OF SUCH DAMAGE.</span></div>
<div class="line"><a name="l00035"></a><span class="lineno"> 35</span> <span class="comment"> *</span></div>
<div class="line"><a name="l00036"></a><span class="lineno"> 36</span> <span class="comment"> * $Id$</span></div>
<div class="line"><a name="l00037"></a><span class="lineno"> 37</span> <span class="comment"> *</span></div>
<div class="line"><a name="l00038"></a><span class="lineno"> 38</span> <span class="comment"> */</span></div>
<div class="line"><a name="l00039"></a><span class="lineno"> 39</span>  </div>
<div class="line"><a name="l00040"></a><span class="lineno"> 40</span> <span class="preprocessor">#pragma once</span></div>
<div class="line"><a name="l00041"></a><span class="lineno"> 41</span>  </div>
<div class="line"><a name="l00042"></a><span class="lineno"> 42</span> <span class="preprocessor">#include <fstream></span></div>
<div class="line"><a name="l00043"></a><span class="lineno"> 43</span> <span class="preprocessor">#include <iostream></span></div>
<div class="line"><a name="l00044"></a><span class="lineno"> 44</span> <span class="preprocessor">#include <vector></span></div>
<div class="line"><a name="l00045"></a><span class="lineno"> 45</span>  </div>
<div class="line"><a name="l00046"></a><span class="lineno"> 46</span> <span class="keyword">namespace </span><a class="code" href="namespacepcl.html">pcl</a></div>
<div class="line"><a name="l00047"></a><span class="lineno"> 47</span> {<span class="comment"></span></div>
<div class="line"><a name="l00048"></a><span class="lineno"> 48</span> <span class="comment"> /** \brief This represents a bivariate polynomial and provides some functionality for it</span></div>
<div class="line"><a name="l00049"></a><span class="lineno"> 49</span> <span class="comment"> * \author Bastian Steder</span></div>
<div class="line"><a name="l00050"></a><span class="lineno"> 50</span> <span class="comment"> * \ingroup common</span></div>
<div class="line"><a name="l00051"></a><span class="lineno"> 51</span> <span class="comment"> */</span></div>
<div class="line"><a name="l00052"></a><span class="lineno"> 52</span>  <span class="keyword">template</span><<span class="keyword">typename</span> real></div>
<div class="line"><a name="l00053"></a><span class="lineno"><a class="line" href="classpcl_1_1_bivariate_polynomial_t.html"> 53</a></span>  <span class="keyword">class </span><a class="code" href="classpcl_1_1_bivariate_polynomial_t.html">BivariatePolynomialT</a></div>
<div class="line"><a name="l00054"></a><span class="lineno"> 54</span>  {</div>
<div class="line"><a name="l00055"></a><span class="lineno"> 55</span>  <span class="keyword">public</span>:</div>
<div class="line"><a name="l00056"></a><span class="lineno"> 56</span>  <span class="comment">//-----CONSTRUCTOR&DESTRUCTOR-----</span><span class="comment"></span></div>
<div class="line"><a name="l00057"></a><span class="lineno"> 57</span> <span class="comment"> /** Constructor */</span></div>
<div class="line"><a name="l00058"></a><span class="lineno"> 58</span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#a3b5e10284148e752608ac7a3360c38bc">BivariatePolynomialT</a> (<span class="keywordtype">int</span> new_degree=0);<span class="comment"></span></div>
<div class="line"><a name="l00059"></a><span class="lineno"> 59</span> <span class="comment"> /** Copy constructor */</span></div>
<div class="line"><a name="l00060"></a><span class="lineno"> 60</span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#a3b5e10284148e752608ac7a3360c38bc">BivariatePolynomialT</a> (<span class="keyword">const</span> <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html">BivariatePolynomialT</a>& other);<span class="comment"></span></div>
<div class="line"><a name="l00061"></a><span class="lineno"> 61</span> <span class="comment"> /** Destructor */</span></div>
<div class="line"><a name="l00062"></a><span class="lineno"> 62</span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#a0f28750be24f617a845d13a5b162024d">~BivariatePolynomialT</a> ();</div>
<div class="line"><a name="l00063"></a><span class="lineno"> 63</span>  </div>
<div class="line"><a name="l00064"></a><span class="lineno"> 64</span>  <span class="comment">//-----OPERATORS-----</span><span class="comment"></span></div>
<div class="line"><a name="l00065"></a><span class="lineno"> 65</span> <span class="comment"> /** = operator */</span></div>
<div class="line"><a name="l00066"></a><span class="lineno"> 66</span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html">BivariatePolynomialT</a>&</div>
<div class="line"><a name="l00067"></a><span class="lineno"><a class="line" href="classpcl_1_1_bivariate_polynomial_t.html#a662197ded030021e9ed89b1e340a136d"> 67</a></span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#a662197ded030021e9ed89b1e340a136d">operator= </a>(<span class="keyword">const</span> <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html">BivariatePolynomialT</a>& other) { <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#a19a20b4a2f728467070e04b12e65f5f9">deepCopy</a> (other); <span class="keywordflow">return</span> *<span class="keyword">this</span>;}</div>
<div class="line"><a name="l00068"></a><span class="lineno"> 68</span>  </div>
<div class="line"><a name="l00069"></a><span class="lineno"> 69</span>  <span class="comment">//-----METHODS-----</span><span class="comment"></span></div>
<div class="line"><a name="l00070"></a><span class="lineno"> 70</span> <span class="comment"> /** Initialize members to default values */</span></div>
<div class="line"><a name="l00071"></a><span class="lineno"> 71</span>  <span class="keywordtype">void</span></div>
<div class="line"><a name="l00072"></a><span class="lineno"> 72</span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#aed11361541574e5403b2cae87a6fdefb">setDegree</a> (<span class="keywordtype">int</span> new_degree);</div>
<div class="line"><a name="l00073"></a><span class="lineno"> 73</span> <span class="comment"></span> </div>
<div class="line"><a name="l00074"></a><span class="lineno"> 74</span> <span class="comment"> /** How many parameters has a bivariate polynomial with this degree */</span></div>
<div class="line"><a name="l00075"></a><span class="lineno"> 75</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span></div>
<div class="line"><a name="l00076"></a><span class="lineno"><a class="line" href="classpcl_1_1_bivariate_polynomial_t.html#ad3d75267352127a78d7ac4b8c7bf7e09"> 76</a></span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#ad3d75267352127a78d7ac4b8c7bf7e09">getNoOfParameters</a> ()<span class="keyword"> const </span>{ <span class="keywordflow">return</span> <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#af340b29b096afc9905bb3dbace20fc77">getNoOfParametersFromDegree</a> (<a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#ae73e09a6cca0b1d4fa878f7e580cb043">degree</a>);}</div>
<div class="line"><a name="l00077"></a><span class="lineno"> 77</span> <span class="comment"></span> </div>
<div class="line"><a name="l00078"></a><span class="lineno"> 78</span> <span class="comment"> /** Calculate the value of the polynomial at the given point */</span></div>
<div class="line"><a name="l00079"></a><span class="lineno"> 79</span>  real</div>
<div class="line"><a name="l00080"></a><span class="lineno"> 80</span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#acdc0e524f9459299f1ce12ad90c80d11">getValue</a> (real x, real y) <span class="keyword">const</span>;</div>
<div class="line"><a name="l00081"></a><span class="lineno"> 81</span> <span class="comment"></span> </div>
<div class="line"><a name="l00082"></a><span class="lineno"> 82</span> <span class="comment"> /** Calculate the gradient of this polynomial</span></div>
<div class="line"><a name="l00083"></a><span class="lineno"> 83</span> <span class="comment"> * If forceRecalc is false, it will do nothing when the gradient already exists */</span></div>
<div class="line"><a name="l00084"></a><span class="lineno"> 84</span>  <span class="keywordtype">void</span></div>
<div class="line"><a name="l00085"></a><span class="lineno"> 85</span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#acde974dde59cc80e99e489c5060144e9">calculateGradient</a> (<span class="keywordtype">bool</span> forceRecalc=<span class="keyword">false</span>);</div>
<div class="line"><a name="l00086"></a><span class="lineno"> 86</span> <span class="comment"></span> </div>
<div class="line"><a name="l00087"></a><span class="lineno"> 87</span> <span class="comment"> /** Calculate the value of the gradient at the given point */</span></div>
<div class="line"><a name="l00088"></a><span class="lineno"> 88</span>  <span class="keywordtype">void</span></div>
<div class="line"><a name="l00089"></a><span class="lineno"> 89</span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#af6f0e129462f6ab1a5b5418b4fad4e81">getValueOfGradient</a> (real x, real y, real& gradX, real& gradY);</div>
<div class="line"><a name="l00090"></a><span class="lineno"> 90</span> <span class="comment"></span> </div>
<div class="line"><a name="l00091"></a><span class="lineno"> 91</span> <span class="comment"> /** Returns critical points of the polynomial. type can be 0=maximum, 1=minimum, or 2=saddle point</span></div>
<div class="line"><a name="l00092"></a><span class="lineno"> 92</span> <span class="comment"> * !!Currently only implemented for degree 2!! */</span></div>
<div class="line"><a name="l00093"></a><span class="lineno"> 93</span>  <span class="keywordtype">void</span></div>
<div class="line"><a name="l00094"></a><span class="lineno"> 94</span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#a2196b7d0c51d481bd3afe59cad5704ea">findCriticalPoints</a> (std::vector<real>& x_values, std::vector<real>& y_values, std::vector<int>& types) <span class="keyword">const</span>;</div>
<div class="line"><a name="l00095"></a><span class="lineno"> 95</span> <span class="comment"></span> </div>
<div class="line"><a name="l00096"></a><span class="lineno"> 96</span> <span class="comment"> /** write as binary to a stream */</span></div>
<div class="line"><a name="l00097"></a><span class="lineno"> 97</span>  <span class="keywordtype">void</span></div>
<div class="line"><a name="l00098"></a><span class="lineno"> 98</span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#a933644376259b50d3e28d121024b9c08">writeBinary</a> (std::ostream& os) <span class="keyword">const</span>;</div>
<div class="line"><a name="l00099"></a><span class="lineno"> 99</span> <span class="comment"></span> </div>
<div class="line"><a name="l00100"></a><span class="lineno"> 100</span> <span class="comment"> /** write as binary into a file */</span></div>
<div class="line"><a name="l00101"></a><span class="lineno"> 101</span>  <span class="keywordtype">void</span></div>
<div class="line"><a name="l00102"></a><span class="lineno"> 102</span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#a933644376259b50d3e28d121024b9c08">writeBinary</a> (<span class="keyword">const</span> <span class="keywordtype">char</span>* filename) <span class="keyword">const</span>;</div>
<div class="line"><a name="l00103"></a><span class="lineno"> 103</span> <span class="comment"></span> </div>
<div class="line"><a name="l00104"></a><span class="lineno"> 104</span> <span class="comment"> /** read binary from a stream */</span></div>
<div class="line"><a name="l00105"></a><span class="lineno"> 105</span>  <span class="keywordtype">void</span></div>
<div class="line"><a name="l00106"></a><span class="lineno"> 106</span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#a76d452bda6622b29b1d9629bc0de6986">readBinary</a> (std::istream& os);</div>
<div class="line"><a name="l00107"></a><span class="lineno"> 107</span> <span class="comment"></span> </div>
<div class="line"><a name="l00108"></a><span class="lineno"> 108</span> <span class="comment"> /** read binary from a file */</span></div>
<div class="line"><a name="l00109"></a><span class="lineno"> 109</span>  <span class="keywordtype">void</span></div>
<div class="line"><a name="l00110"></a><span class="lineno"> 110</span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#a76d452bda6622b29b1d9629bc0de6986">readBinary</a> (<span class="keyword">const</span> <span class="keywordtype">char</span>* filename);</div>
<div class="line"><a name="l00111"></a><span class="lineno"> 111</span> <span class="comment"></span> </div>
<div class="line"><a name="l00112"></a><span class="lineno"> 112</span> <span class="comment"> /** How many parameters has a bivariate polynomial of the given degree */</span></div>
<div class="line"><a name="l00113"></a><span class="lineno"> 113</span>  <span class="keyword">static</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span></div>
<div class="line"><a name="l00114"></a><span class="lineno"><a class="line" href="classpcl_1_1_bivariate_polynomial_t.html#af340b29b096afc9905bb3dbace20fc77"> 114</a></span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#af340b29b096afc9905bb3dbace20fc77">getNoOfParametersFromDegree</a> (<span class="keywordtype">int</span> n) { <span class="keywordflow">return</span> ((n+2)* (n+1))/2;}</div>
<div class="line"><a name="l00115"></a><span class="lineno"> 115</span>  </div>
<div class="line"><a name="l00116"></a><span class="lineno"> 116</span>  <span class="comment">//-----VARIABLES-----</span></div>
<div class="line"><a name="l00117"></a><span class="lineno"><a class="line" href="classpcl_1_1_bivariate_polynomial_t.html#ae73e09a6cca0b1d4fa878f7e580cb043"> 117</a></span>  <span class="keywordtype">int</span> <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#ae73e09a6cca0b1d4fa878f7e580cb043">degree</a>{0};</div>
<div class="line"><a name="l00118"></a><span class="lineno"><a class="line" href="classpcl_1_1_bivariate_polynomial_t.html#a81ee0b3c6567accf95ac5088de588dae"> 118</a></span>  real* <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#a81ee0b3c6567accf95ac5088de588dae">parameters</a>{<span class="keyword">nullptr</span>};</div>
<div class="line"><a name="l00119"></a><span class="lineno"><a class="line" href="classpcl_1_1_bivariate_polynomial_t.html#af600117b8b76d52dfbfe8c25e857ea73"> 119</a></span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html">BivariatePolynomialT<real></a>* <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#af600117b8b76d52dfbfe8c25e857ea73">gradient_x</a>{<span class="keyword">nullptr</span>};</div>
<div class="line"><a name="l00120"></a><span class="lineno"><a class="line" href="classpcl_1_1_bivariate_polynomial_t.html#a74e0dbe057d2e2d169601b97faacc55f"> 120</a></span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html">BivariatePolynomialT<real></a>* <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#a74e0dbe057d2e2d169601b97faacc55f">gradient_y</a>{<span class="keyword">nullptr</span>};</div>
<div class="line"><a name="l00121"></a><span class="lineno"> 121</span>  </div>
<div class="line"><a name="l00122"></a><span class="lineno"> 122</span>  <span class="keyword">protected</span>:</div>
<div class="line"><a name="l00123"></a><span class="lineno"> 123</span>  <span class="comment">//-----METHODS-----</span><span class="comment"></span></div>
<div class="line"><a name="l00124"></a><span class="lineno"> 124</span> <span class="comment"> /** Delete all members */</span></div>
<div class="line"><a name="l00125"></a><span class="lineno"> 125</span>  <span class="keywordtype">void</span></div>
<div class="line"><a name="l00126"></a><span class="lineno"> 126</span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#a50f80298cd732662a0ca9ab7c2b6af1d">memoryCleanUp</a> ();</div>
<div class="line"><a name="l00127"></a><span class="lineno"> 127</span> <span class="comment"></span> </div>
<div class="line"><a name="l00128"></a><span class="lineno"> 128</span> <span class="comment"> /** Create a deep copy of the given polynomial */</span></div>
<div class="line"><a name="l00129"></a><span class="lineno"> 129</span>  <span class="keywordtype">void</span></div>
<div class="line"><a name="l00130"></a><span class="lineno"> 130</span>  <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html#a19a20b4a2f728467070e04b12e65f5f9">deepCopy</a> (<span class="keyword">const</span> <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html">BivariatePolynomialT<real></a>& other);</div>
<div class="line"><a name="l00131"></a><span class="lineno"> 131</span>  <span class="comment">//-----VARIABLES-----</span></div>
<div class="line"><a name="l00132"></a><span class="lineno"> 132</span>  };</div>
<div class="line"><a name="l00133"></a><span class="lineno"> 133</span>  </div>
<div class="line"><a name="l00134"></a><span class="lineno"> 134</span>  <span class="keyword">template</span><<span class="keyword">typename</span> real></div>
<div class="line"><a name="l00135"></a><span class="lineno"> 135</span>  std::ostream&</div>
<div class="line"><a name="l00136"></a><span class="lineno"> 136</span>  <a class="code" href="namespacepcl.html#a4e32b0632e12d5a051cb8b04ea5f5ca0">operator<< </a>(std::ostream& os, <span class="keyword">const</span> BivariatePolynomialT<real>& p);</div>
<div class="line"><a name="l00137"></a><span class="lineno"> 137</span>  </div>
<div class="line"><a name="l00138"></a><span class="lineno"><a class="line" href="namespacepcl.html#a50f06eaf95ee8d0c6af44271124a3660"> 138</a></span>  <span class="keyword">using</span> <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html">BivariatePolynomiald</a> = <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html">BivariatePolynomialT<double></a>;</div>
<div class="line"><a name="l00139"></a><span class="lineno"><a class="line" href="namespacepcl.html#a3f368bb27adce3e34778c4da706d99cc"> 139</a></span>  <span class="keyword">using</span> <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html">BivariatePolynomial</a> = <a class="code" href="classpcl_1_1_bivariate_polynomial_t.html">BivariatePolynomialT<float></a>;</div>
<div class="line"><a name="l00140"></a><span class="lineno"> 140</span>  </div>
<div class="line"><a name="l00141"></a><span class="lineno"> 141</span> } <span class="comment">// end namespace</span></div>
<div class="line"><a name="l00142"></a><span class="lineno"> 142</span>  </div>
<div class="line"><a name="l00143"></a><span class="lineno"> 143</span> <span class="preprocessor">#include <pcl/common/impl/bivariate_polynomial.hpp></span></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html">pcl::BivariatePolynomialT</a></div><div class="ttdoc">This represents a bivariate polynomial and provides some functionality for it.</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8h_source.html#l00053">bivariate_polynomial.h:54</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_a0f28750be24f617a845d13a5b162024d"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#a0f28750be24f617a845d13a5b162024d">pcl::BivariatePolynomialT::~BivariatePolynomialT</a></div><div class="ttdeci">~BivariatePolynomialT()</div><div class="ttdoc">Destructor.</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8hpp_source.html#l00069">bivariate_polynomial.hpp:69</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_a19a20b4a2f728467070e04b12e65f5f9"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#a19a20b4a2f728467070e04b12e65f5f9">pcl::BivariatePolynomialT::deepCopy</a></div><div class="ttdeci">void deepCopy(const BivariatePolynomialT< real > &other)</div><div class="ttdoc">Create a deep copy of the given polynomial.</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8hpp_source.html#l00106">bivariate_polynomial.hpp:106</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_a2196b7d0c51d481bd3afe59cad5704ea"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#a2196b7d0c51d481bd3afe59cad5704ea">pcl::BivariatePolynomialT::findCriticalPoints</a></div><div class="ttdeci">void findCriticalPoints(std::vector< real > &x_values, std::vector< real > &y_values, std::vector< int > &types) const</div><div class="ttdoc">Returns critical points of the polynomial.</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8hpp_source.html#l00200">bivariate_polynomial.hpp:200</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_a3b5e10284148e752608ac7a3360c38bc"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#a3b5e10284148e752608ac7a3360c38bc">pcl::BivariatePolynomialT::BivariatePolynomialT</a></div><div class="ttdeci">BivariatePolynomialT(int new_degree=0)</div><div class="ttdoc">Constructor.</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8hpp_source.html#l00055">bivariate_polynomial.hpp:55</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_a50f80298cd732662a0ca9ab7c2b6af1d"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#a50f80298cd732662a0ca9ab7c2b6af1d">pcl::BivariatePolynomialT::memoryCleanUp</a></div><div class="ttdeci">void memoryCleanUp()</div><div class="ttdoc">Delete all members.</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8hpp_source.html#l00097">bivariate_polynomial.hpp:97</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_a662197ded030021e9ed89b1e340a136d"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#a662197ded030021e9ed89b1e340a136d">pcl::BivariatePolynomialT::operator=</a></div><div class="ttdeci">BivariatePolynomialT & operator=(const BivariatePolynomialT &other)</div><div class="ttdoc">= operator</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8h_source.html#l00067">bivariate_polynomial.h:67</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_a74e0dbe057d2e2d169601b97faacc55f"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#a74e0dbe057d2e2d169601b97faacc55f">pcl::BivariatePolynomialT::gradient_y</a></div><div class="ttdeci">BivariatePolynomialT< real > * gradient_y</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8h_source.html#l00120">bivariate_polynomial.h:120</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_a76d452bda6622b29b1d9629bc0de6986"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#a76d452bda6622b29b1d9629bc0de6986">pcl::BivariatePolynomialT::readBinary</a></div><div class="ttdeci">void readBinary(std::istream &os)</div><div class="ttdoc">read binary from a stream</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8hpp_source.html#l00293">bivariate_polynomial.hpp:293</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_a81ee0b3c6567accf95ac5088de588dae"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#a81ee0b3c6567accf95ac5088de588dae">pcl::BivariatePolynomialT::parameters</a></div><div class="ttdeci">real * parameters</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8h_source.html#l00118">bivariate_polynomial.h:118</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_a933644376259b50d3e28d121024b9c08"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#a933644376259b50d3e28d121024b9c08">pcl::BivariatePolynomialT::writeBinary</a></div><div class="ttdeci">void writeBinary(std::ostream &os) const</div><div class="ttdoc">write as binary to a stream</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8hpp_source.html#l00276">bivariate_polynomial.hpp:276</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_acdc0e524f9459299f1ce12ad90c80d11"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#acdc0e524f9459299f1ce12ad90c80d11">pcl::BivariatePolynomialT::getValue</a></div><div class="ttdeci">real getValue(real x, real y) const</div><div class="ttdoc">Calculate the value of the polynomial at the given point.</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8hpp_source.html#l00170">bivariate_polynomial.hpp:170</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_acde974dde59cc80e99e489c5060144e9"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#acde974dde59cc80e99e489c5060144e9">pcl::BivariatePolynomialT::calculateGradient</a></div><div class="ttdeci">void calculateGradient(bool forceRecalc=false)</div><div class="ttdoc">Calculate the gradient of this polynomial If forceRecalc is false, it will do nothing when the gradie...</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8hpp_source.html#l00139">bivariate_polynomial.hpp:139</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_ad3d75267352127a78d7ac4b8c7bf7e09"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#ad3d75267352127a78d7ac4b8c7bf7e09">pcl::BivariatePolynomialT::getNoOfParameters</a></div><div class="ttdeci">unsigned int getNoOfParameters() const</div><div class="ttdoc">How many parameters has a bivariate polynomial with this degree.</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8h_source.html#l00076">bivariate_polynomial.h:76</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_ae73e09a6cca0b1d4fa878f7e580cb043"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#ae73e09a6cca0b1d4fa878f7e580cb043">pcl::BivariatePolynomialT::degree</a></div><div class="ttdeci">int degree</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8h_source.html#l00117">bivariate_polynomial.h:117</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_aed11361541574e5403b2cae87a6fdefb"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#aed11361541574e5403b2cae87a6fdefb">pcl::BivariatePolynomialT::setDegree</a></div><div class="ttdeci">void setDegree(int new_degree)</div><div class="ttdoc">Initialize members to default values.</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8hpp_source.html#l00076">bivariate_polynomial.hpp:76</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_af340b29b096afc9905bb3dbace20fc77"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#af340b29b096afc9905bb3dbace20fc77">pcl::BivariatePolynomialT::getNoOfParametersFromDegree</a></div><div class="ttdeci">static unsigned int getNoOfParametersFromDegree(int n)</div><div class="ttdoc">How many parameters has a bivariate polynomial of the given degree.</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8h_source.html#l00114">bivariate_polynomial.h:114</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_af600117b8b76d52dfbfe8c25e857ea73"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#af600117b8b76d52dfbfe8c25e857ea73">pcl::BivariatePolynomialT::gradient_x</a></div><div class="ttdeci">BivariatePolynomialT< real > * gradient_x</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8h_source.html#l00119">bivariate_polynomial.h:119</a></div></div>
<div class="ttc" id="aclasspcl_1_1_bivariate_polynomial_t_html_af6f0e129462f6ab1a5b5418b4fad4e81"><div class="ttname"><a href="classpcl_1_1_bivariate_polynomial_t.html#af6f0e129462f6ab1a5b5418b4fad4e81">pcl::BivariatePolynomialT::getValueOfGradient</a></div><div class="ttdeci">void getValueOfGradient(real x, real y, real &gradX, real &gradY)</div><div class="ttdoc">Calculate the value of the gradient at the given point.</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8hpp_source.html#l00191">bivariate_polynomial.hpp:191</a></div></div>
<div class="ttc" id="anamespacepcl_html"><div class="ttname"><a href="namespacepcl.html">pcl</a></div><div class="ttdef"><b>Definition:</b> <a href="2d_2include_2pcl_22d_2convolution_8h_source.html#l00046">convolution.h:46</a></div></div>
<div class="ttc" id="anamespacepcl_html_a4e32b0632e12d5a051cb8b04ea5f5ca0"><div class="ttname"><a href="namespacepcl.html#a4e32b0632e12d5a051cb8b04ea5f5ca0">pcl::operator<<</a></div><div class="ttdeci">std::ostream & operator<<(std::ostream &os, const BivariatePolynomialT< real > &p)</div><div class="ttdef"><b>Definition:</b> <a href="bivariate__polynomial_8hpp_source.html#l00237">bivariate_polynomial.hpp:238</a></div></div>
</div><!-- fragment --></div><!-- contents -->
<hr>
<div id="footer">
<p>
Except where otherwise noted, the PointClouds.org web pages are licensed under <a href="http://creativecommons.org/licenses/by/3.0/">Creative Commons Attribution 3.0</a>.
</p>
<p>Pages generated on Tue Jan 7 2025 14:17:37</p>
</div> <!-- #footer -->
</body>
</html>