forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsuperResNet.h
128 lines (109 loc) · 3.76 KB
/
superResNet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/*
* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __SUPERRESNET_NET_H__
#define __SUPERRESNET_NET_H__
#include "tensorNet.h"
/**
* @note superResNet is only supported with TensorRT 5.0 and newer,
* as it uses ONNX models and requires ONNX import support in TensorRT.
*/
#if NV_TENSORRT_MAJOR >= 5
# define HAS_SUPERRES_NET
#endif
/**
* Name of default input blob for segmentation model.
* @ingroup deepVision
*/
#define RESNET_DEFAULT_INPUT "input_0"
/**
* Name of default output blob for segmentation model.
* @ingroup deepVision
*/
#define RESNET_DEFAULT_OUTPUT "output_0"
/**
* Super Resolution Network
*/
class superResNet : public tensorNet {
public:
/**
* Load super resolution network
*/
enum NetworkType {
FCN_ResNet18_Cityscapes_512x256,
FCN_ResNet18_Cityscapes_1024x512,
FCN_ResNet18_Cityscapes_2048x1024,
FCN_ResNet18_DeepScene_576x320,
FCN_ResNet18_DeepScene_864x480,
FCN_ResNet18_MHP_512x320,
FCN_ResNet18_MHP_640x360,
FCN_ResNet18_Pascal_VOC_320x320,
FCN_ResNet18_Pascal_VOC_512x320,
FCN_ResNet18_SUN_RGBD_512x400,
FCN_ResNet18_SUN_RGBD_640x512
};
static superResNet* Create();
static superResNet* Create(const char* model_path,
const char* input = RESNET_DEFAULT_INPUT,
const char* output = RESNET_DEFAULT_OUTPUT,
uint32_t maxBatchSize = 2);
static superResNet* Create(NetworkType networkType,
uint32_t maxBatchSize = 2);
/**
* Destroy
*/
~superResNet();
/**
* Upscale a 4-channel RGBA image.
*/
bool UpscaleRGBA(float* input, uint32_t inputWidth, uint32_t inputHeight,
float* output, uint32_t outputWidth, uint32_t outputHeight,
float maxPixelValue = 255.0f);
/**
* Upscale a 4-channel RGBA image.
*/
bool UpscaleRGBA(float* input, float* output, float maxPixelValue = 255.0f);
/**
* Retrieve the width of the input image, in pixels.
*/
inline uint32_t GetInputWidth() const { return mWidth; }
/**
* Retrieve the height of the input image, in pixels.
*/
inline uint32_t GetInputHeight() const { return mHeight; }
/**
* Retrieve the width of the output image, in pixels.
*/
inline uint32_t GetOutputWidth() const { return DIMS_W(mOutputs[0].dims); }
/**
* Retrieve the height of the output image, in pixels.
*/
inline uint32_t GetOutputHeight() const { return DIMS_H(mOutputs[0].dims); }
/**
* Retrieve the scale factor between the input and output.
*/
inline double GetScaleFactor() const {
return (double)(double(GetOutputWidth()) / double(GetInputWidth()));
}
protected:
superResNet();
};
#endif