diff --git a/README.md b/README.md index be92813..a73b4a0 100644 --- a/README.md +++ b/README.md @@ -2,12 +2,10 @@ ![Prototype](https://github.com/nicolasvalenchon/Portiloop/blob/main/images/photo_portiloop.jpg) -Your training curves can be visualized in the Portiloop [wandb project](https://wandb.ai/portiloop). - ## Quick start guide - clone the repo -- cd to the root of the repo where `setup.py` is +- cd to the root of the repo (i.e., the folder where `setup.py` is) - pip install with the -e option: ```terminal pip install -e . @@ -16,10 +14,15 @@ pip install -e . - unzip the `datasets.zip` file and paste its content under `Portiloop>Software>dataset` - unzip the `experiments.zip` file and paste its content under `Portiloop>Software>experiments` -### Inference / Portiloop simulation: -The `simulate_Portiloop_1_input_classification.ipynb` [notebook](https://github.com/nicolasvalenchon/Portiloop/blob/main/notebooks/simulate_Portiloop_1_input_classification.ipynb) enables stimulating the Portiloop system with and perform inference. +### Offline inference / simulation: +The `simulate_Portiloop_1_input_classification.ipynb` [notebook](https://github.com/nicolasvalenchon/Portiloop/blob/main/notebooks/simulate_Portiloop_1_input_classification.ipynb) enables stimulating the Portiloop system and perform inference. This notebook can be executed with `jupyter notebook`. ### Training: -We provide the bash scripts examples for `slurm` to train the model on HPC systems. +Functions used for training are defined in python under the `Software` folder. +We provide bash scripts examples for `SLURM` to train the model on HPC systems. Adapt these scripts to your configuration. +Your training curves can be visualized in real time easily using [wandb](https://wandb.ai/portiloop) (the code is ready, you may adapt it to your project name and entity). + +### Hardware implementation: +The current hardware implementation (pynq FPGA with Vivado / Vivado HLS) is provided under the `Hardware` folder.