forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
flexible_job_shop_sat.py
205 lines (167 loc) · 7.4 KB
/
flexible_job_shop_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env python3
# Copyright 2010-2024 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Solves a flexible jobshop problems with the CP-SAT solver.
A jobshop is a standard scheduling problem when you must sequence a
series of task_types on a set of machines. Each job contains one task_type per
machine. The order of execution and the length of each job on each
machine is task_type dependent.
The objective is to minimize the maximum completion time of all
jobs. This is called the makespan.
"""
# overloaded sum() clashes with pytype.
import collections
from ortools.sat.python import cp_model
class SolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self) -> None:
cp_model.CpSolverSolutionCallback.__init__(self)
self.__solution_count = 0
def on_solution_callback(self) -> None:
"""Called at each new solution."""
print(
f"Solution {self.__solution_count}, time = {self.wall_time} s,"
f" objective = {self.objective_value}"
)
self.__solution_count += 1
def flexible_jobshop() -> None:
"""solve a small flexible jobshop problem."""
# Data part.
jobs = [ # task = (processing_time, machine_id)
[ # Job 0
[(3, 0), (1, 1), (5, 2)], # task 0 with 3 alternatives
[(2, 0), (4, 1), (6, 2)], # task 1 with 3 alternatives
[(2, 0), (3, 1), (1, 2)], # task 2 with 3 alternatives
],
[ # Job 1
[(2, 0), (3, 1), (4, 2)],
[(1, 0), (5, 1), (4, 2)],
[(2, 0), (1, 1), (4, 2)],
],
[ # Job 2
[(2, 0), (1, 1), (4, 2)],
[(2, 0), (3, 1), (4, 2)],
[(3, 0), (1, 1), (5, 2)],
],
]
num_jobs = len(jobs)
all_jobs = range(num_jobs)
num_machines = 3
all_machines = range(num_machines)
# Model the flexible jobshop problem.
model = cp_model.CpModel()
horizon = 0
for job in jobs:
for task in job:
max_task_duration = 0
for alternative in task:
max_task_duration = max(max_task_duration, alternative[0])
horizon += max_task_duration
print(f"Horizon = {horizon}")
# Global storage of variables.
intervals_per_resources = collections.defaultdict(list)
starts = {} # indexed by (job_id, task_id).
presences = {} # indexed by (job_id, task_id, alt_id).
job_ends: list[cp_model.IntVar] = []
# Scan the jobs and create the relevant variables and intervals.
for job_id in all_jobs:
job = jobs[job_id]
num_tasks = len(job)
previous_end = None
for task_id in range(num_tasks):
task = job[task_id]
min_duration = task[0][0]
max_duration = task[0][0]
num_alternatives = len(task)
all_alternatives = range(num_alternatives)
for alt_id in range(1, num_alternatives):
alt_duration = task[alt_id][0]
min_duration = min(min_duration, alt_duration)
max_duration = max(max_duration, alt_duration)
# Create main interval for the task.
suffix_name = f"_j{job_id}_t{task_id}"
start = model.new_int_var(0, horizon, "start" + suffix_name)
duration = model.new_int_var(
min_duration, max_duration, "duration" + suffix_name
)
end = model.new_int_var(0, horizon, "end" + suffix_name)
interval = model.new_interval_var(
start, duration, end, "interval" + suffix_name
)
# Store the start for the solution.
starts[(job_id, task_id)] = start
# Add precedence with previous task in the same job.
if previous_end is not None:
model.add(start >= previous_end)
previous_end = end
# Create alternative intervals.
if num_alternatives > 1:
l_presences = []
for alt_id in all_alternatives:
alt_suffix = f"_j{job_id}_t{task_id}_a{alt_id}"
l_presence = model.new_bool_var("presence" + alt_suffix)
l_start = model.new_int_var(0, horizon, "start" + alt_suffix)
l_duration = task[alt_id][0]
l_end = model.new_int_var(0, horizon, "end" + alt_suffix)
l_interval = model.new_optional_interval_var(
l_start, l_duration, l_end, l_presence, "interval" + alt_suffix
)
l_presences.append(l_presence)
# Link the primary/global variables with the local ones.
model.add(start == l_start).only_enforce_if(l_presence)
model.add(duration == l_duration).only_enforce_if(l_presence)
model.add(end == l_end).only_enforce_if(l_presence)
# Add the local interval to the right machine.
intervals_per_resources[task[alt_id][1]].append(l_interval)
# Store the presences for the solution.
presences[(job_id, task_id, alt_id)] = l_presence
# Select exactly one presence variable.
model.add_exactly_one(l_presences)
else:
intervals_per_resources[task[0][1]].append(interval)
presences[(job_id, task_id, 0)] = model.new_constant(1)
if previous_end is not None:
job_ends.append(previous_end)
# Create machines constraints.
for machine_id in all_machines:
intervals = intervals_per_resources[machine_id]
if len(intervals) > 1:
model.add_no_overlap(intervals)
# Makespan objective
makespan = model.new_int_var(0, horizon, "makespan")
model.add_max_equality(makespan, job_ends)
model.minimize(makespan)
# Solve model.
solver = cp_model.CpSolver()
solution_printer = SolutionPrinter()
status = solver.solve(model, solution_printer)
# Print final solution.
if status in (cp_model.OPTIMAL, cp_model.FEASIBLE):
print(f"Optimal objective value: {solver.objective_value}")
for job_id in all_jobs:
print(f"Job {job_id}")
for task_id, task in enumerate(jobs[job_id]):
start_value = solver.value(starts[(job_id, task_id)])
machine: int = -1
task_duration: int = -1
selected: int = -1
for alt_id, alt in enumerate(task):
if solver.boolean_value(presences[(job_id, task_id, alt_id)]):
task_duration, machine = alt
selected = alt_id
print(
f" task_{job_id}_{task_id} starts at {start_value} (alt"
f" {selected}, machine {machine}, duration {task_duration})"
)
print(solver.response_stats())
flexible_jobshop()