forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtasks_and_workers_assignment_sat.py
133 lines (106 loc) · 4.34 KB
/
tasks_and_workers_assignment_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/usr/bin/env python3
# Copyright 2010-2024 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tasks and workers to group assignment to average sum(cost) / #workers."""
from typing import Sequence
from absl import app
from ortools.sat.python import cp_model
class ObjectivePrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__solution_count = 0
def on_solution_callback(self):
print(
"Solution %i, time = %f s, objective = %i"
% (self.__solution_count, self.wall_time, self.objective_value)
)
self.__solution_count += 1
def tasks_and_workers_assignment_sat() -> None:
"""solve the assignment problem."""
model = cp_model.CpModel()
# CP-SAT solver is integer only.
task_cost = [24, 10, 7, 2, 11, 16, 1, 13, 9, 27]
num_tasks = len(task_cost)
num_workers = 3
num_groups = 2
all_workers = range(num_workers)
all_groups = range(num_groups)
all_tasks = range(num_tasks)
# Variables
## x_ij = 1 if worker i is assigned to group j
x = {}
for i in all_workers:
for j in all_groups:
x[i, j] = model.new_bool_var("x[%i,%i]" % (i, j))
## y_kj is 1 if task k is assigned to group j
y = {}
for k in all_tasks:
for j in all_groups:
y[k, j] = model.new_bool_var("x[%i,%i]" % (k, j))
# Constraints
# Each task k is assigned to a group and only one.
for k in all_tasks:
model.add(sum(y[k, j] for j in all_groups) == 1)
# Each worker i is assigned to a group and only one.
for i in all_workers:
model.add(sum(x[i, j] for j in all_groups) == 1)
# Cost per group
sum_of_costs = sum(task_cost)
averages = []
num_workers_in_group = []
scaled_sum_of_costs_in_group = []
scaling = 1000 # We introduce scaling to deal with floating point average.
for j in all_groups:
n = model.new_int_var(1, num_workers, "num_workers_in_group_%i" % j)
model.add(n == sum(x[i, j] for i in all_workers))
c = model.new_int_var(0, sum_of_costs * scaling, "sum_of_costs_of_group_%i" % j)
model.add(c == sum(y[k, j] * task_cost[k] * scaling for k in all_tasks))
a = model.new_int_var(0, sum_of_costs * scaling, "average_cost_of_group_%i" % j)
model.add_division_equality(a, c, n)
averages.append(a)
num_workers_in_group.append(n)
scaled_sum_of_costs_in_group.append(c)
# All workers are assigned.
model.add(sum(num_workers_in_group) == num_workers)
# Objective.
obj = model.new_int_var(0, sum_of_costs * scaling, "obj")
model.add_max_equality(obj, averages)
model.minimize(obj)
# Solve and print out the solution.
solver = cp_model.CpSolver()
solver.parameters.max_time_in_seconds = 60 * 60 * 2
objective_printer = ObjectivePrinter()
status = solver.solve(model, objective_printer)
print(solver.response_stats())
if status == cp_model.OPTIMAL:
for j in all_groups:
print("Group %i" % j)
for i in all_workers:
if solver.boolean_value(x[i, j]):
print(" - worker %i" % i)
for k in all_tasks:
if solver.boolean_value(y[k, j]):
print(" - task %i with cost %i" % (k, task_cost[k]))
print(
" - sum_of_costs = %i"
% (solver.value(scaled_sum_of_costs_in_group[j]) // scaling)
)
print(" - average cost = %f" % (solver.value(averages[j]) * 1.0 / scaling))
tasks_and_workers_assignment_sat()
def main(argv: Sequence[str]) -> None:
if len(argv) > 1:
raise app.UsageError("Too many command-line arguments.")
tasks_and_workers_assignment_sat()
if __name__ == "__main__":
app.run(main)