forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcumulative_variable_profile_sample_sat.py
283 lines (250 loc) · 9.11 KB
/
cumulative_variable_profile_sample_sat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#!/usr/bin/env python3
# Copyright 2010-2024 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Solves a scheduling problem with a min and max profile for the work load."""
import io
from absl import app
import pandas as pd
from ortools.sat.python import cp_model
def create_data_model() -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""Creates the dataframes that describes the model."""
max_load_str: str = """
start_hour max_load
0 0
2 0
4 3
6 6
8 8
10 12
12 8
14 12
16 10
18 6
20 4
22 0
"""
min_load_str: str = """
start_hour min_load
0 0
2 0
4 0
6 0
8 3
10 3
12 1
14 3
16 3
18 1
20 1
22 0
"""
tasks_str: str = """
name duration load priority
t1 60 3 2
t2 180 2 1
t3 240 5 3
t4 90 4 2
t5 120 3 1
t6 300 3 3
t7 120 1 2
t8 100 5 2
t9 110 2 1
t10 300 5 3
t11 90 4 2
t12 120 3 1
t13 250 3 3
t14 120 1 2
t15 40 5 3
t16 70 4 2
t17 90 8 1
t18 40 3 3
t19 120 5 2
t20 60 3 2
t21 180 2 1
t22 240 5 3
t23 90 4 2
t24 120 3 1
t25 300 3 3
t26 120 1 2
t27 100 5 2
t28 110 2 1
t29 300 5 3
t30 90 4 2
"""
max_load_df = pd.read_table(io.StringIO(max_load_str), sep=r"\s+")
min_load_df = pd.read_table(io.StringIO(min_load_str), sep=r"\s+")
tasks_df = pd.read_table(io.StringIO(tasks_str), index_col=0, sep=r"\s+")
return max_load_df, min_load_df, tasks_df
# [END data_model]
def check_solution(
tasks: list[tuple[int, int, int]],
min_load_df: pd.DataFrame,
max_load_df: pd.DataFrame,
period_length: int,
horizon: int,
) -> bool:
"""Checks the solution validity against the min and max load constraints."""
minutes_per_hour = 60
actual_load_profile = [0 for _ in range(horizon)]
min_load_profile = [0 for _ in range(horizon)]
max_load_profile = [0 for _ in range(horizon)]
# The complexity of the checker is linear in the number of time points, and
# should be improved.
for task in tasks:
for t in range(task[1]):
actual_load_profile[task[0] + t] += task[2]
for row in max_load_df.itertuples():
for t in range(period_length):
max_load_profile[row.start_hour * minutes_per_hour + t] = row.max_load
for row in min_load_df.itertuples():
for t in range(period_length):
min_load_profile[row.start_hour * minutes_per_hour + t] = row.min_load
for time in range(horizon):
if actual_load_profile[time] > max_load_profile[time]:
print(
f"actual load {actual_load_profile[time]} at time {time} is greater"
f" than max load {max_load_profile[time]}"
)
return False
if actual_load_profile[time] < min_load_profile[time]:
print(
f"actual load {actual_load_profile[time]} at time {time} is"
f" less than min load {min_load_profile[time]}"
)
return False
return True
def main(_) -> None:
"""Create the model and solves it."""
max_load_df, min_load_df, tasks_df = create_data_model()
# Create the model.
model = cp_model.CpModel()
# Get the max capacity from the capacity dataframe.
max_load = max_load_df.max_load.max()
print(f"Max capacity = {max_load}")
print(f"#tasks = {len(tasks_df)}")
minutes_per_hour: int = 60
horizon: int = 24 * 60
# Variables
starts = model.new_int_var_series(
name="starts",
lower_bounds=0,
upper_bounds=horizon - tasks_df.duration,
index=tasks_df.index,
)
performed = model.new_bool_var_series(name="performed", index=tasks_df.index)
intervals = model.new_optional_fixed_size_interval_var_series(
name="intervals",
index=tasks_df.index,
starts=starts,
sizes=tasks_df.duration,
are_present=performed,
)
# Set up the max profile. We use fixed (intervals, demands) to fill in the
# space between the actual max load profile and the max capacity.
time_period_max_intervals = model.new_fixed_size_interval_var_series(
name="time_period_max_intervals",
index=max_load_df.index,
starts=max_load_df.start_hour * minutes_per_hour,
sizes=minutes_per_hour * 2,
)
time_period_max_heights = max_load - max_load_df.max_load
# Cumulative constraint for the max profile.
model.add_cumulative(
intervals.to_list() + time_period_max_intervals.to_list(),
tasks_df.load.to_list() + time_period_max_heights.to_list(),
max_load,
)
# Set up complemented intervals (from 0 to start, and from start + size to
# horizon).
prefix_intervals = model.new_optional_interval_var_series(
name="prefix_intervals",
index=tasks_df.index,
starts=0,
sizes=starts,
ends=starts,
are_present=performed,
)
suffix_intervals = model.new_optional_interval_var_series(
name="suffix_intervals",
index=tasks_df.index,
starts=starts + tasks_df.duration,
sizes=horizon - starts - tasks_df.duration,
ends=horizon,
are_present=performed,
)
# Set up the min profile. We use complemented intervals to maintain the
# complement of the work load, and fixed intervals to enforce the min
# number of active workers per time period.
#
# Note that this works only if the max load cumulative is also added to the
# model.
time_period_min_intervals = model.new_fixed_size_interval_var_series(
name="time_period_min_intervals",
index=min_load_df.index,
starts=min_load_df.start_hour * minutes_per_hour,
sizes=minutes_per_hour * 2,
)
time_period_min_heights = min_load_df.min_load
# We take into account optional intervals. The actual capacity of the min load
# cumulative is the sum of all the active demands.
sum_of_demands = sum(tasks_df.load)
complement_capacity = model.new_int_var(0, sum_of_demands, "complement_capacity")
model.add(complement_capacity == performed.dot(tasks_df.load))
# Cumulative constraint for the min profile.
model.add_cumulative(
prefix_intervals.to_list()
+ suffix_intervals.to_list()
+ time_period_min_intervals.to_list(),
tasks_df.load.to_list()
+ tasks_df.load.to_list()
+ time_period_min_heights.to_list(),
complement_capacity,
)
# Objective: maximize the value of performed intervals.
# 1 is the max priority.
max_priority = max(tasks_df.priority)
model.maximize(sum(performed * (max_priority + 1 - tasks_df.priority)))
# Create the solver and solve the model.
solver = cp_model.CpSolver()
solver.parameters.log_search_progress = True
solver.parameters.num_workers = 16
solver.parameters.max_time_in_seconds = 30.0
status = solver.solve(model)
if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
start_values = solver.values(starts)
performed_values = solver.boolean_values(performed)
tasks: list[tuple[int, int, int]] = []
for task in tasks_df.index:
if performed_values[task]:
print(
f'task {task} duration={tasks_df["duration"][task]} '
f'load={tasks_df["load"][task]} starts at {start_values[task]}'
)
tasks.append(
(start_values[task], tasks_df.duration[task], tasks_df.load[task])
)
else:
print(f"task {task} is not performed")
assert check_solution(
tasks=tasks,
min_load_df=min_load_df,
max_load_df=max_load_df,
period_length=2 * minutes_per_hour,
horizon=horizon,
)
elif status == cp_model.INFEASIBLE:
print("No solution found")
else:
print("Something is wrong, check the status and the log of the solve")
if __name__ == "__main__":
app.run(main)