@@ -695,7 +695,9 @@ def __init__(
695695 _logger .setLevel (logging .INFO )
696696 if logging .root .getEffectiveLevel () > logging .INFO :
697697 # Avoid duplicate stream handlers to be added when multiple DataStats are used in a chain.
698- has_console_handler = any (hasattr (h , "is_data_stats_handler" ) and h .is_data_stats_handler for h in _logger .handlers )
698+ has_console_handler = any (
699+ hasattr (h , "is_data_stats_handler" ) and h .is_data_stats_handler for h in _logger .handlers
700+ )
699701 if not has_console_handler :
700702 # if the root log level is higher than INFO, set a separate stream handler to record
701703 console = logging .StreamHandler (sys .stdout )
@@ -805,7 +807,9 @@ class Lambda(InvertibleTransform):
805807
806808 backend = [TransformBackends .TORCH , TransformBackends .NUMPY ]
807809
808- def __init__ (self , func : Callable | None = None , inv_func : Callable = no_collation , track_meta : bool = True ) -> None :
810+ def __init__ (
811+ self , func : Callable | None = None , inv_func : Callable = no_collation , track_meta : bool = True
812+ ) -> None :
809813 if func is not None and not callable (func ):
810814 raise TypeError (f"func must be None or callable but is { type (func ).__name__ } ." )
811815 self .func = func
@@ -1039,7 +1043,9 @@ def __call__(
10391043 if output_shape is None :
10401044 output_shape = self .output_shape
10411045 indices : list [NdarrayOrTensor ]
1042- indices = map_classes_to_indices (label , self .num_classes , image , self .image_threshold , self .max_samples_per_class )
1046+ indices = map_classes_to_indices (
1047+ label , self .num_classes , image , self .image_threshold , self .max_samples_per_class
1048+ )
10431049 if output_shape is not None :
10441050 indices = [unravel_indices (cls_indices , output_shape ) for cls_indices in indices ]
10451051
@@ -1651,7 +1657,9 @@ class ImageFilter(Transform):
16511657 """
16521658
16531659 backend = [TransformBackends .TORCH , TransformBackends .NUMPY ]
1654- supported_filters = sorted (["mean" , "laplace" , "elliptical" , "sobel" , "sharpen" , "median" , "gauss" , "savitzky_golay" ])
1660+ supported_filters = sorted (
1661+ ["mean" , "laplace" , "elliptical" , "sobel" , "sharpen" , "median" , "gauss" , "savitzky_golay" ]
1662+ )
16551663
16561664 def __init__ (self , filter : str | NdarrayOrTensor | nn .Module , filter_size : int | None = None , ** kwargs ) -> None :
16571665 self ._check_filter_format (filter , filter_size )
@@ -1792,7 +1800,9 @@ class RandImageFilter(RandomizableTransform):
17921800
17931801 backend = ImageFilter .backend
17941802
1795- def __init__ (self , filter : str | NdarrayOrTensor , filter_size : int | None = None , prob : float = 0.1 , ** kwargs ) -> None :
1803+ def __init__ (
1804+ self , filter : str | NdarrayOrTensor , filter_size : int | None = None , prob : float = 0.1 , ** kwargs
1805+ ) -> None :
17961806 super ().__init__ (prob )
17971807 self .filter = ImageFilter (filter , filter_size , ** kwargs )
17981808
@@ -1882,7 +1892,9 @@ def _compute_final_affine(self, affine: torch.Tensor, applied_affine: torch.Tens
18821892
18831893 return affine
18841894
1885- def transform_coordinates (self , data : torch .Tensor , affine : torch .Tensor | None = None ) -> tuple [torch .Tensor , dict ]:
1895+ def transform_coordinates (
1896+ self , data : torch .Tensor , affine : torch .Tensor | None = None
1897+ ) -> tuple [torch .Tensor , dict ]:
18861898 """
18871899 Transform coordinates using an affine transformation matrix.
18881900
0 commit comments