|
204 | 204 | torch.ones((1, 302, 403, 301)), |
205 | 205 | ], |
206 | 206 | ] |
207 | | - |
208 | 207 | TESTS: list[list] = [ |
209 | 208 | params["template"] + [*params["device_val"]] |
210 | 209 | for params in dict_product(template=all_template_parts, device_val=TEST_DEVICES) |
211 | 210 | ] |
212 | 211 |
|
213 | | -TESTS_TORCH = [] |
214 | | -for track_meta in (False, True): |
215 | | - for p in TEST_NDARRAYS_ALL: |
216 | | - TESTS_TORCH.append([[1.2, 1.3, 0.9], p(torch.zeros((1, 3, 4, 5))), track_meta]) |
| 212 | +TESTS_TORCH = [ |
| 213 | + [[1.2, 1.3, 0.9], params["p"](torch.zeros((1, 3, 4, 5))), params["track_meta"]] |
| 214 | + for params in dict_product(track_meta=[False, True], p=TEST_NDARRAYS_ALL) |
| 215 | +] |
217 | 216 |
|
218 | | -TEST_INVERSE = [] |
219 | | -for d in TEST_DEVICES: |
220 | | - for recompute in (False, True): |
221 | | - for align in (False, True): |
222 | | - for scale_extent in (False, True): |
223 | | - TEST_INVERSE.append([*d, recompute, align, scale_extent]) |
| 217 | +TEST_INVERSE = [ |
| 218 | + [*params["d"], params["recompute"], params["align"], params["scale_extent"]] |
| 219 | + for params in dict_product(d=TEST_DEVICES, recompute=[False, True], align=[False, True], scale_extent=[False, True]) |
| 220 | +] |
224 | 221 |
|
225 | 222 |
|
226 | 223 | @skip_if_quick |
|
0 commit comments