|
1 | 1 | { |
2 | | - "cells": [ |
3 | | - { |
4 | | - "cell_type": "markdown", |
5 | | - "id": "WK53GWYq4eo1", |
6 | | - "metadata": { |
7 | | - "id": "WK53GWYq4eo1" |
8 | | - }, |
9 | | - "source": [ |
10 | | - "# Clinical DICOM CT and MRI Preprocessing with MONAI\n", |
11 | | - "This notebook demonstrates inference-time preprocessing pipelines for CT and MRI DICOM series using MONAI, suitable for PACS/RIS workflows in hospital radiology environments.\n", |
12 | | - "**Note:** This notebook focuses on preprocessing only and excludes training or patient-identifiable data." |
13 | | - ] |
14 | | - }, |
15 | | - { |
16 | | - "cell_type": "code", |
17 | | - "execution_count": 1, |
18 | | - "id": "LTKh48zD4eo4", |
19 | | - "metadata": { |
20 | | - "colab": { |
21 | | - "base_uri": "https://localhost:8080/" |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "WK53GWYq4eo1", |
| 6 | + "metadata": { |
| 7 | + "id": "WK53GWYq4eo1" |
| 8 | + }, |
| 9 | + "source": [ |
| 10 | + "# Clinical DICOM CT and MRI Preprocessing with MONAI\n", |
| 11 | + "This notebook demonstrates inference-time preprocessing pipelines for CT and MRI DICOM series using MONAI, suitable for PACS/RIS workflows in hospital radiology environments.\n", |
| 12 | + "**Note:** This notebook focuses on preprocessing only and excludes training or patient-identifiable data." |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": 1, |
| 18 | + "id": "LTKh48zD4eo4", |
| 19 | + "metadata": { |
| 20 | + "colab": { |
| 21 | + "base_uri": "https://localhost:8080/" |
| 22 | + }, |
| 23 | + "id": "LTKh48zD4eo4", |
| 24 | + "outputId": "dcdc9430-1d52-4272-9079-8faba741099e" |
| 25 | + }, |
| 26 | + "outputs": [ |
| 27 | + { |
| 28 | + "name": "stdout", |
| 29 | + "output_type": "stream", |
| 30 | + "text": [ |
| 31 | + "\u001b[?25l \u001b[90m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[32m0.0/2.7 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[90m\u257a\u001b[0m\u001b[90m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[32m1.9/2.7 MB\u001b[0m \u001b[31m53.8 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[91m\u2578\u001b[0m \u001b[32m2.7/2.7 MB\u001b[0m \u001b[31m43.7 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[32m2.7/2.7 MB\u001b[0m \u001b[31m21.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", |
| 32 | + "\u001b[?25h\u001b[?25l \u001b[90m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[32m0.0/2.4 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m\u001b[91m\u2578\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m147.2 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m38.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", |
| 33 | + "\u001b[?25h" |
| 34 | + ] |
| 35 | + } |
| 36 | + ], |
| 37 | + "source": [ |
| 38 | + "# Install required packages\n", |
| 39 | + "!pip install monai pydicom nibabel --quiet" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "markdown", |
| 44 | + "id": "gyAtaTBP4eo7", |
| 45 | + "metadata": { |
| 46 | + "id": "gyAtaTBP4eo7" |
| 47 | + }, |
| 48 | + "source": [ |
| 49 | + "## Import Libraries" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "code", |
| 54 | + "execution_count": 5, |
| 55 | + "id": "k2DfCDZM4eo8", |
| 56 | + "metadata": { |
| 57 | + "id": "k2DfCDZM4eo8" |
| 58 | + }, |
| 59 | + "outputs": [], |
| 60 | + "source": [ |
| 61 | + "from monai.transforms import (\n", |
| 62 | + " LoadImage,\n", |
| 63 | + " EnsureChannelFirst,\n", |
| 64 | + " ScaleIntensityRange,\n", |
| 65 | + " NormalizeIntensity,\n", |
| 66 | + " Compose\n", |
| 67 | + ")\n", |
| 68 | + "import numpy as np" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "markdown", |
| 73 | + "id": "HAxGJVgy4eo8", |
| 74 | + "metadata": { |
| 75 | + "id": "HAxGJVgy4eo8" |
| 76 | + }, |
| 77 | + "source": [ |
| 78 | + "## Define Preprocessing Pipelines" |
| 79 | + ] |
| 80 | + }, |
| 81 | + { |
| 82 | + "cell_type": "code", |
| 83 | + "execution_count": 6, |
| 84 | + "id": "cP-zDmqu4eo8", |
| 85 | + "metadata": { |
| 86 | + "id": "cP-zDmqu4eo8" |
| 87 | + }, |
| 88 | + "outputs": [], |
| 89 | + "source": [ |
| 90 | + "def get_ct_preprocessing_pipeline():\n", |
| 91 | + " return Compose([\n", |
| 92 | + " LoadImage(image_only=True),\n", |
| 93 | + " EnsureChannelFirst(),\n", |
| 94 | + " ScaleIntensityRange(a_min=-1000, a_max=400, b_min=0.0, b_max=1.0, clip=True)\n", |
| 95 | + " ])\n", |
| 96 | + "\n", |
| 97 | + "def get_mri_preprocessing_pipeline():\n", |
| 98 | + " return Compose([\n", |
| 99 | + " LoadImage(image_only=True),\n", |
| 100 | + " EnsureChannelFirst(),\n", |
| 101 | + " NormalizeIntensity(nonzero=True)\n", |
| 102 | + " ])" |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "markdown", |
| 107 | + "id": "OuRHidt_4eo9", |
| 108 | + "metadata": { |
| 109 | + "id": "OuRHidt_4eo9" |
| 110 | + }, |
| 111 | + "source": [ |
| 112 | + "## Preprocessing Function" |
| 113 | + ] |
| 114 | + }, |
| 115 | + { |
| 116 | + "cell_type": "code", |
| 117 | + "execution_count": 7, |
| 118 | + "id": "BcGeKvkc4eo-", |
| 119 | + "metadata": { |
| 120 | + "id": "BcGeKvkc4eo-" |
| 121 | + }, |
| 122 | + "outputs": [], |
| 123 | + "source": [ |
| 124 | + "def preprocess_dicom_series(dicom_path, modality):\n", |
| 125 | + " modality = modality.upper()\n", |
| 126 | + " if modality == 'CT':\n", |
| 127 | + " transform = get_ct_preprocessing_pipeline()\n", |
| 128 | + " elif modality == 'MRI':\n", |
| 129 | + " transform = get_mri_preprocessing_pipeline()\n", |
| 130 | + " else:\n", |
| 131 | + " raise ValueError(\"Unsupported modality. Use 'CT' or 'MRI'.\")\n", |
| 132 | + " image = transform(dicom_path)\n", |
| 133 | + " return image" |
| 134 | + ] |
| 135 | + }, |
| 136 | + { |
| 137 | + "cell_type": "markdown", |
| 138 | + "id": "3bWBPrp44eo-", |
| 139 | + "metadata": { |
| 140 | + "id": "3bWBPrp44eo-" |
| 141 | + }, |
| 142 | + "source": [ |
| 143 | + "## Example Usage" |
| 144 | + ] |
22 | 145 | }, |
23 | | - "id": "LTKh48zD4eo4", |
24 | | - "outputId": "dcdc9430-1d52-4272-9079-8faba741099e" |
25 | | - }, |
26 | | - "outputs": [ |
27 | 146 | { |
28 | | - "name": "stdout", |
29 | | - "output_type": "stream", |
30 | | - "text": [ |
31 | | - "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/2.7 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━\u001b[0m \u001b[32m1.9/2.7 MB\u001b[0m \u001b[31m53.8 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m2.7/2.7 MB\u001b[0m \u001b[31m43.7 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.7/2.7 MB\u001b[0m \u001b[31m21.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", |
32 | | - "\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/2.4 MB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m147.2 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m38.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", |
33 | | - "\u001b[?25h" |
34 | | - ] |
| 147 | + "cell_type": "code", |
| 148 | + "execution_count": null, |
| 149 | + "id": "VlZZgpHg4eo_", |
| 150 | + "metadata": { |
| 151 | + "id": "VlZZgpHg4eo_" |
| 152 | + }, |
| 153 | + "outputs": [], |
| 154 | + "source": [ |
| 155 | + "# Replace these paths with your own DICOM series paths\n", |
| 156 | + "ct_dicom_path = '/path/to/ct/dicom/series'\n", |
| 157 | + "mri_dicom_path = '/path/to/mri/dicom/series'\n", |
| 158 | + "\n", |
| 159 | + "ct_image = preprocess_dicom_series(ct_dicom_path, 'CT')\n", |
| 160 | + "mri_image = preprocess_dicom_series(mri_dicom_path, 'MRI')\n", |
| 161 | + "\n", |
| 162 | + "print('CT image shape:', ct_image.shape)\n", |
| 163 | + "print('MRI image shape:', mri_image.shape)" |
| 164 | + ] |
| 165 | + } |
| 166 | + ], |
| 167 | + "metadata": { |
| 168 | + "colab": { |
| 169 | + "provenance": [] |
| 170 | + }, |
| 171 | + "kernelspec": { |
| 172 | + "display_name": "Python 3", |
| 173 | + "language": "python", |
| 174 | + "name": "python3" |
| 175 | + }, |
| 176 | + "language_info": { |
| 177 | + "name": "python", |
| 178 | + "version": "3.10" |
35 | 179 | } |
36 | | - ], |
37 | | - "source": [ |
38 | | - "# Install required packages\n", |
39 | | - "!pip install monai pydicom nibabel --quiet" |
40 | | - ] |
41 | | - }, |
42 | | - { |
43 | | - "cell_type": "markdown", |
44 | | - "id": "gyAtaTBP4eo7", |
45 | | - "metadata": { |
46 | | - "id": "gyAtaTBP4eo7" |
47 | | - }, |
48 | | - "source": [ |
49 | | - "## Import Libraries" |
50 | | - ] |
51 | | - }, |
52 | | - { |
53 | | - "cell_type": "code", |
54 | | - "execution_count": 5, |
55 | | - "id": "k2DfCDZM4eo8", |
56 | | - "metadata": { |
57 | | - "id": "k2DfCDZM4eo8" |
58 | | - }, |
59 | | - "outputs": [], |
60 | | - "source": [ |
61 | | - "from monai.transforms import (\n", |
62 | | - " LoadImage,\n", |
63 | | - " EnsureChannelFirst,\n", |
64 | | - " ScaleIntensityRange,\n", |
65 | | - " NormalizeIntensity,\n", |
66 | | - " Compose\n", |
67 | | - ")\n", |
68 | | - "import numpy as np" |
69 | | - ] |
70 | | - }, |
71 | | - { |
72 | | - "cell_type": "markdown", |
73 | | - "id": "HAxGJVgy4eo8", |
74 | | - "metadata": { |
75 | | - "id": "HAxGJVgy4eo8" |
76 | | - }, |
77 | | - "source": [ |
78 | | - "## Define Preprocessing Pipelines" |
79 | | - ] |
80 | | - }, |
81 | | - { |
82 | | - "cell_type": "code", |
83 | | - "execution_count": 6, |
84 | | - "id": "cP-zDmqu4eo8", |
85 | | - "metadata": { |
86 | | - "id": "cP-zDmqu4eo8" |
87 | | - }, |
88 | | - "outputs": [], |
89 | | - "source": [ |
90 | | - "def get_ct_preprocessing_pipeline():\n", |
91 | | - " return Compose([\n", |
92 | | - " LoadImage(image_only=True),\n", |
93 | | - " EnsureChannelFirst(),\n", |
94 | | - " ScaleIntensityRange(a_min=-1000, a_max=400, b_min=0.0, b_max=1.0, clip=True)\n", |
95 | | - " ])\n", |
96 | | - "\n", |
97 | | - "def get_mri_preprocessing_pipeline():\n", |
98 | | - " return Compose([\n", |
99 | | - " LoadImage(image_only=True),\n", |
100 | | - " EnsureChannelFirst(),\n", |
101 | | - " NormalizeIntensity(nonzero=True)\n", |
102 | | - " ])" |
103 | | - ] |
104 | | - }, |
105 | | - { |
106 | | - "cell_type": "markdown", |
107 | | - "id": "OuRHidt_4eo9", |
108 | | - "metadata": { |
109 | | - "id": "OuRHidt_4eo9" |
110 | | - }, |
111 | | - "source": [ |
112 | | - "## Preprocessing Function" |
113 | | - ] |
114 | | - }, |
115 | | - { |
116 | | - "cell_type": "code", |
117 | | - "execution_count": 7, |
118 | | - "id": "BcGeKvkc4eo-", |
119 | | - "metadata": { |
120 | | - "id": "BcGeKvkc4eo-" |
121 | | - }, |
122 | | - "outputs": [], |
123 | | - "source": [ |
124 | | - "def preprocess_dicom_series(dicom_path, modality):\n", |
125 | | - " modality = modality.upper()\n", |
126 | | - " if modality == 'CT':\n", |
127 | | - " transform = get_ct_preprocessing_pipeline()\n", |
128 | | - " elif modality == 'MRI':\n", |
129 | | - " transform = get_mri_preprocessing_pipeline()\n", |
130 | | - " else:\n", |
131 | | - " raise ValueError(\"Unsupported modality. Use 'CT' or 'MRI'.\")\n", |
132 | | - " image = transform(dicom_path)\n", |
133 | | - " return image" |
134 | | - ] |
135 | | - }, |
136 | | - { |
137 | | - "cell_type": "markdown", |
138 | | - "id": "3bWBPrp44eo-", |
139 | | - "metadata": { |
140 | | - "id": "3bWBPrp44eo-" |
141 | | - }, |
142 | | - "source": [ |
143 | | - "## Example Usage" |
144 | | - ] |
145 | | - }, |
146 | | - { |
147 | | - "cell_type": "code", |
148 | | - "execution_count": null, |
149 | | - "id": "VlZZgpHg4eo_", |
150 | | - "metadata": { |
151 | | - "id": "VlZZgpHg4eo_" |
152 | | - }, |
153 | | - "outputs": [], |
154 | | - "source": [ |
155 | | - "# Replace these paths with your own DICOM series paths\n", |
156 | | - "ct_dicom_path = '/path/to/ct/dicom/series'\n", |
157 | | - "mri_dicom_path = '/path/to/mri/dicom/series'\n", |
158 | | - "\n", |
159 | | - "ct_image = preprocess_dicom_series(ct_dicom_path, 'CT')\n", |
160 | | - "mri_image = preprocess_dicom_series(mri_dicom_path, 'MRI')\n", |
161 | | - "\n", |
162 | | - "print('CT image shape:', ct_image.shape)\n", |
163 | | - "print('MRI image shape:', mri_image.shape)" |
164 | | - ] |
165 | | - } |
166 | | - ], |
167 | | - "metadata": { |
168 | | - "colab": { |
169 | | - "provenance": [] |
170 | | - }, |
171 | | - "kernelspec": { |
172 | | - "display_name": "Python 3", |
173 | | - "language": "python", |
174 | | - "name": "python3" |
175 | 180 | }, |
176 | | - "language_info": { |
177 | | - "name": "python", |
178 | | - "version": "3.10" |
179 | | - } |
180 | | - }, |
181 | | - "nbformat": 4, |
182 | | - "nbformat_minor": 5 |
| 181 | + "nbformat": 4, |
| 182 | + "nbformat_minor": 5 |
183 | 183 | } |
0 commit comments