|
56 | 56 | }, |
57 | 57 | { |
58 | 58 | "cell_type": "code", |
59 | | - "execution_count": 1, |
| 59 | + "execution_count": null, |
60 | 60 | "id": "cdea37d5", |
61 | 61 | "metadata": {}, |
62 | 62 | "outputs": [ |
|
120 | 120 | " LoadImaged,\n", |
121 | 121 | " Resized,\n", |
122 | 122 | " ScaleIntensityd,\n", |
123 | | - " ScaleIntensityRangePercentilesd\n", |
| 123 | + " ScaleIntensityRangePercentilesd,\n", |
124 | 124 | ")\n", |
125 | 125 | "from monai.utils import set_determinism\n", |
126 | 126 | "from monai.inferers import DiffusionInferer\n", |
|
159 | 159 | } |
160 | 160 | ], |
161 | 161 | "source": [ |
162 | | - "directory = os.path.abspath(\"./data\") # os.environ.get(\"MONAI_DATA_DIRECTORY\")\n", |
| 162 | + "directory = os.environ.get(\"MONAI_DATA_DIRECTORY\")\n", |
163 | 163 | "root_dir = tempfile.mkdtemp() if directory is None else directory\n", |
164 | 164 | "print(root_dir)" |
165 | 165 | ] |
|
223 | 223 | }, |
224 | 224 | { |
225 | 225 | "cell_type": "code", |
226 | | - "execution_count": 9, |
| 226 | + "execution_count": null, |
227 | 227 | "id": "ddd61e60", |
228 | 228 | "metadata": { |
229 | 229 | "lines_to_next_cell": 2 |
|
247 | 247 | " task=\"Task01_BrainTumour\",\n", |
248 | 248 | " transform=data_transform,\n", |
249 | 249 | " section=\"training\",\n", |
250 | | - " download=False, #True,\n", |
| 250 | + " download=True,\n", |
251 | 251 | " num_workers=num_workers,\n", |
252 | 252 | ")\n", |
253 | 253 | "\n", |
|
260 | 260 | " task=\"Task01_BrainTumour\",\n", |
261 | 261 | " transform=data_transform,\n", |
262 | 262 | " section=\"validation\",\n", |
263 | | - " download=False, #True,\n", |
| 263 | + " download=True,\n", |
264 | 264 | " num_workers=num_workers,\n", |
265 | 265 | ")\n", |
266 | 266 | "\n", |
|
393 | 393 | }, |
394 | 394 | { |
395 | 395 | "cell_type": "code", |
396 | | - "execution_count": 13, |
| 396 | + "execution_count": null, |
397 | 397 | "id": "6c1de5ad", |
398 | 398 | "metadata": {}, |
399 | 399 | "outputs": [], |
400 | 400 | "source": [ |
401 | 401 | "num_train_timesteps = 1000\n", |
402 | 402 | "scheduler = DDPMScheduler(\n", |
403 | | - " num_train_timesteps=num_train_timesteps #, schedule=\"scaled_linear_beta\", beta_start=0.0005, beta_end=0.0195, clip_sample=False\n", |
| 403 | + " num_train_timesteps=num_train_timesteps # , schedule=\"scaled_linear_beta\", beta_start=0.0005, beta_end=0.0195, clip_sample=False\n", |
404 | 404 | ")" |
405 | 405 | ] |
406 | 406 | }, |
|
468 | 468 | }, |
469 | 469 | { |
470 | 470 | "cell_type": "code", |
471 | | - "execution_count": 16, |
| 471 | + "execution_count": null, |
472 | 472 | "id": "bd10b595", |
473 | 473 | "metadata": { |
474 | 474 | "lines_to_next_cell": 0 |
|
653 | 653 | " if (epoch + 1) % val_interval == 0:\n", |
654 | 654 | " model.eval()\n", |
655 | 655 | "\n", |
656 | | - " torch.save(model.state_dict(),f\"model_{epoch:04}.pth\")\n", |
| 656 | + " torch.save(model.state_dict(), f\"model_{epoch:04}.pth\")\n", |
657 | 657 | "\n", |
658 | 658 | " val_epoch_loss = 0\n", |
659 | 659 | " for step, batch in enumerate(val_loader):\n", |
|
0 commit comments