diff --git a/2d_segmentation/torch/unet_evaluation_array.py b/2d_segmentation/torch/unet_evaluation_array.py index 8f3636901..f85ee76e1 100644 --- a/2d_segmentation/torch/unet_evaluation_array.py +++ b/2d_segmentation/torch/unet_evaluation_array.py @@ -47,7 +47,7 @@ def main(tempdir): val_loader = DataLoader(val_ds, batch_size=1, num_workers=1, pin_memory=torch.cuda.is_available()) dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False) post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) - saver = SaveImage(output_dir="./output", output_ext=".png", output_postfix="seg") + saver = SaveImage(output_dir="./output", output_ext=".png", output_postfix="seg", scale=255) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = UNet( spatial_dims=2, diff --git a/2d_segmentation/torch/unet_evaluation_dict.py b/2d_segmentation/torch/unet_evaluation_dict.py index 531709918..6c8859a72 100644 --- a/2d_segmentation/torch/unet_evaluation_dict.py +++ b/2d_segmentation/torch/unet_evaluation_dict.py @@ -61,7 +61,7 @@ def main(tempdir): val_loader = DataLoader(val_ds, batch_size=1, num_workers=4, collate_fn=list_data_collate) dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False) post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) - saver = SaveImage(output_dir="./output", output_ext=".png", output_postfix="seg") + saver = SaveImage(output_dir="./output", output_ext=".png", output_postfix="seg", scale=255) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = UNet( spatial_dims=2,