-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinfer_tacotron2_onnx.py
180 lines (147 loc) · 6.28 KB
/
infer_tacotron2_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import onnxruntime as ort
import soundfile as sf
from nemo.collections.tts.models import HifiGanModel, Tacotron2Model
def initialize_decoder_states(self, memory):
B = memory.shape[0]
MAX_TIME = memory.shape[1]
attention_hidden = np.zeros((B, self.attention_rnn_dim), dtype=np.float32)
attention_cell = np.zeros((B, self.attention_rnn_dim), dtype=np.float32)
decoder_hidden = np.zeros((B, self.decoder_rnn_dim), dtype=np.float32)
decoder_cell = np.zeros((B, self.decoder_rnn_dim), dtype=np.float32)
attention_weights = np.zeros((B, MAX_TIME), dtype=np.float32)
attention_weights_cum = np.zeros((B, MAX_TIME), dtype=np.float32)
attention_context = np.zeros((B, self.encoder_embedding_dim), dtype=np.float32)
return (
attention_hidden,
attention_cell,
decoder_hidden,
decoder_cell,
attention_weights,
attention_weights_cum,
attention_context,
)
def get_go_frame(self, memory):
B = memory.shape[0]
decoder_input = np.zeros((B, self.n_mel_channels * self.n_frames_per_step), dtype=np.float32)
return decoder_input
def sigmoid(x):
return np.exp(-np.logaddexp(0, -x))
def parse_decoder_outputs(self, mel_outputs, gate_outputs, alignments):
# (T_out, B) -> (B, T_out)
alignments = np.stack(alignments).transpose((1, 0, 2, 3))
# (T_out, B) -> (B, T_out)
# Add a -1 to prevent squeezing the batch dimension in case
# batch is 1
gate_outputs = np.stack(gate_outputs).squeeze(-1).transpose((1, 0, 2))
# (T_out, B, n_mel_channels) -> (B, T_out, n_mel_channels)
mel_outputs = np.stack(mel_outputs).transpose((1, 0, 2, 3))
# decouple frames per step
mel_outputs = mel_outputs.reshape(mel_outputs.shape[0], -1, self.n_mel_channels)
# (B, T_out, n_mel_channels) -> (B, n_mel_channels, T_out)
mel_outputs = mel_outputs.transpose((0, 2, 1))
return mel_outputs, gate_outputs, alignments
# only numpy operations
def test_inference(encoder, decoder_iter, postnet):
parsed = spec_generator.parse("You can type your sentence here to get nemo to produce speech.").to("cpu")
sequences, sequence_lengths = parsed, np.array([parsed.size(1)])
print("Running Tacotron2 Encoder")
inputs = {"seq": sequences.numpy(), "seq_len": sequence_lengths}
memory, processed_memory, _ = encoder.run(None, inputs)
print("Running Tacotron2 Decoder")
mel_lengths = np.zeros([memory.shape[0]], dtype=np.int32)
not_finished = np.ones([memory.shape[0]], dtype=np.int32)
mel_outputs, gate_outputs, alignments = [], [], []
gate_threshold = 0.5
max_decoder_steps = 1000
first_iter = True
(
attention_hidden,
attention_cell,
decoder_hidden,
decoder_cell,
attention_weights,
attention_weights_cum,
attention_context,
) = initialize_decoder_states(spec_generator.decoder, memory)
decoder_input = get_go_frame(spec_generator.decoder, memory)
while True:
inputs = {
"decoder_input": decoder_input,
"attention_hidden": attention_hidden,
"attention_cell": attention_cell,
"decoder_hidden": decoder_hidden,
"decoder_cell": decoder_cell,
"attention_weights": attention_weights,
"attention_weights_cum": attention_weights_cum,
"attention_context": attention_context,
"memory": memory,
"processed_memory": processed_memory,
}
(
mel_output,
gate_output,
attention_hidden,
attention_cell,
decoder_hidden,
decoder_cell,
attention_weights,
attention_weights_cum,
attention_context,
) = decoder_iter.run(None, inputs)
if first_iter:
mel_outputs = [np.expand_dims(mel_output, 2)]
gate_outputs = [np.expand_dims(gate_output, 2)]
alignments = [np.expand_dims(attention_weights, 2)]
first_iter = False
else:
mel_outputs += [np.expand_dims(mel_output, 2)]
gate_outputs += [np.expand_dims(gate_output, 2)]
alignments += [np.expand_dims(attention_weights, 2)]
dec = np.less(sigmoid(gate_output), gate_threshold)
dec = np.squeeze(dec, axis=1)
not_finished = not_finished * dec
mel_lengths += not_finished
if not_finished.sum() == 0:
print("Stopping after ", len(mel_outputs), " decoder steps")
break
if len(mel_outputs) == max_decoder_steps:
print("Warning! Reached max decoder steps")
break
decoder_input = mel_output
mel_outputs, gate_outputs, alignments = parse_decoder_outputs(
spec_generator.decoder, mel_outputs, gate_outputs, alignments
)
print("Running Tacotron2 PostNet")
inputs = {"mel_spec": mel_outputs}
mel_outputs_postnet = postnet.run(None, inputs)
return mel_outputs_postnet
# vocoder = HifiGanModel.from_pretrained(model_name="tts_en_hifigan").to("cpu")
# vocoder.eval()
# vocoder.export("vocoder.onnx")
spec_generator = Tacotron2Model.from_pretrained("lunarlist/tts-thai-last-step").to("cpu")
spec_generator.eval()
spec_generator.export("th.onnx")
# Load encoder/decoder/postnet from onnx files
encoder = ort.InferenceSession("tacotron2encoder-th.onnx")
decoder = ort.InferenceSession("tacotron2decoder-th.onnx")
postnet = ort.InferenceSession("tacotron2postnet-th.onnx")
mel = test_inference(encoder, decoder, postnet)
# Use vocoder to get raw audio from spectrogram
hifi = ort.InferenceSession("vocoder.onnx")
audio = hifi.run(None, {"spec": mel[0]})
audio = audio[0][0, 0, :]
sf.write("speech.wav", audio, 22050, format="WAV")