-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGradient Descent
37 lines (25 loc) · 1.03 KB
/
Gradient Descent
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn the parameter theta
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
% Performs a single gradient step on the parameter vector
% theta.
%
% While debugging, it is useful to print out the values
% of the cost function (computeCost) and gradient.
%
%h=X*theta;
%delta=1/m*(sum((h-y)'*X)); %delta is only 1x1 dimension
%delta=1/m*(sum(h-y)*sum(X)); %array correct but turns to NaN
%delta=1/m*(h-y).*X;
delta=1/m*(X'*X*theta-X'*y);
theta=theta-alpha.*delta;
%fprintf(theta);
% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta);
end