-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_masked.py
322 lines (259 loc) · 9.2 KB
/
test_masked.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# Copyright (c) QuantCo 2023-2025
# SPDX-License-Identifier: BSD-3-Clause
import math
import warnings
import numpy as np
import pytest
import ndonnx as ndx
import ndonnx.extensions as nda
from .utils import assert_array_equal, get_numpy_array_api_namespace, run
def testfill_null():
a = ndx.asarray(np.ma.masked_array([1, 2, -1], mask=[0, 0, 1], dtype=np.int64))
b = nda.fill_null(a, ndx.asarray(0))
expected_b = np.array([1, 2, 0], dtype=np.int64)
assert_array_equal(b.unwrap_numpy(), expected_b)
@pytest.mark.parametrize(
"fn_name",
["add", "subtract", "multiply", "divide", "floor_divide", "remainder"],
)
def test_arithmetic_none_propagation(fn_name):
fn = getattr(ndx, fn_name)
np_fn = getattr(np.ma, fn_name)
a_np = np.ma.MaskedArray([-1, 2.0, 3.0], mask=[1, 0, 0])
b_np = np.ma.MaskedArray([2.0, 1.0, -1], mask=[0, 0, 1])
a = ndx.asarray(a_np, dtype=ndx.nfloat64)
b = ndx.asarray(b_np, dtype=ndx.nfloat64)
c = fn(a, b)
expected_c = np_fn(a_np, b_np)
assert_array_equal(c.unwrap_numpy(), expected_c)
@pytest.mark.xfail(reason="Masked reduction ops are ill-defined")
@pytest.mark.parametrize(
"fn_name, default_value",
[
("sum", 0),
# ("prod", 1),
("min", math.inf),
("max", -math.inf),
],
)
def test_reduce_ops_none_filling(fn_name, default_value):
fn = getattr(ndx, fn_name)
np_fn = getattr(np, fn_name)
a = ndx.array(shape=(3,), dtype=ndx.nfloat32)
b = fn(a)
model = ndx.build({"a": a}, {"b": b})
inp_a = np.ma.masked_array([0.0, -2.0, 3.0], dtype=np.float32, mask=[1, 0, 0])
ret_b = run(model, {"a": inp_a})["b"]
expected_b = np_fn(np.ma.filled(inp_a, default_value))
assert_array_equal(ret_b, expected_b)
@pytest.mark.parametrize(
"fn_name, args, kwargs",
[
("abs", (), {}),
("exp", (), {}),
("log", (), {}),
("sqrt", (), {}),
("sin", (), {}),
("cos", (), {}),
("tan", (), {}),
("asin", (), {}),
("acos", (), {}),
("atan", (), {}),
# ("sinh", (), {}),
("negative", (), {}),
("positive", (), {}),
("floor", (), {}),
("sign", (), {}),
("expand_dims", (), {"axis": 0}),
("reshape", ((3, 1),), {}),
("flip", (), {}),
("permute_dims", ((1, 0),), {}),
("roll", (1,), {}),
("squeeze", (0,), {}),
],
)
def test_unary_none_propagation(fn_name, args, kwargs):
a_np = np.ma.masked_array([[0, -2.0, 3.0]], mask=[[1, 0, 0]], dtype=np.float32)
fn = getattr(ndx, fn_name)
a = ndx.asarray(a_np, dtype=ndx.nfloat32)
b = fn(a, *args)
# model = ndx.build({"a": a}, {"b": b})
# ret_b = run(model, {"a": inp_a})["b"]
missing_a = a_np.mask
if np.__version__ < "2":
if not (np_fn := getattr(np.ma, fn_name, None)):
pytest.skip(reason=f"function `{fn_name}` not supported for np1x.")
else:
npx = get_numpy_array_api_namespace()
np_fn = getattr(npx, fn_name)
# Numpy might complain about invalid values
with warnings.catch_warnings():
warnings.simplefilter("ignore")
expected_b = np_fn(a_np, *args, **kwargs)
np.testing.assert_almost_equal(
np.ma.masked_array(expected_b, mask=missing_a),
b.unwrap_numpy(),
decimal=5,
)
def test_forbidden_masked():
a = ndx.array(shape=(3,), dtype=ndx.nint64)
with pytest.raises(TypeError):
ndx.arange(a, 0, 1)
def test_masked_getitem():
a_np = np.ma.masked_array([1, 2, 3], mask=[0, 0, 1], dtype=np.int64)
a = ndx.asarray(a_np, dtype=ndx.nint64)
np.testing.assert_equal([1], a[0].unwrap_numpy())
def test_masked_setitem():
a_np = np.ma.masked_array([1, 2, 3], mask=[0, 0, 0], dtype=np.int64)
a_start = ndx.asarray(a_np, dtype=ndx.nint64)
a = a_start.copy()
a[0] = 10
np.testing.assert_equal([10, 2, 3], a.unwrap_numpy())
def test_asarray_masked():
a = ndx.asarray(np.ma.masked_array([1, 2, 3], mask=[0, 0, 1])) + 1
assert_array_equal(
a.to_numpy(),
np.ma.masked_array([2, 3, 4], mask=[0, 0, 1]),
)
def test_eager_mode():
a = ndx.asarray(np.ma.masked_array([1, 2, 3], mask=[0, 0, 1], dtype=np.int64))
b = ndx.asarray(np.ma.masked_array([1, 2, 3], mask=[0, 0, 1], dtype=np.int64))
c = ndx.asarray(
np.ma.masked_array([-12, 21, 12213], mask=[1, 0, 0], dtype=np.int64)
)
assert_array_equal(
(a + b).to_numpy(),
np.ma.masked_array([2, 4, 6], mask=[0, 0, 1], dtype=np.int64),
)
assert_array_equal(
(a - b).to_numpy(),
np.ma.masked_array([0, 0, 0], mask=[0, 0, 1], dtype=np.int64),
)
assert_array_equal(
(a * c).to_numpy(),
np.ma.masked_array([-12, 42, 36639], mask=[1, 0, 1], dtype=np.int64),
)
@pytest.mark.parametrize(
"func",
[
np.tril,
np.triu,
],
)
def test_trilu_masked_input(func):
a = np.ma.masked_array(
[[1, 2, 3], [4, 5, 6]], mask=[[0, 0, 1], [0, 0, 0]], dtype=np.int64
)
expected = func(a)
pytest.skip("NumPy's 'tril'/'triu' does not propagate the mask")
actual = getattr(ndx, func.__name__)(ndx.asarray(a))
assert_array_equal(actual.to_numpy(), expected)
@pytest.mark.parametrize(
"arrays",
[
[
np.ma.masked_array([1, 2, 3], mask=[0, 0, 1], dtype=np.int64),
np.ma.masked_array([1, 2, 3], mask=[0, 0, 1], dtype=np.int64),
],
[],
[np.ma.masked_array([1, 2, 3], mask=[0, 0, 1], dtype=np.int64)],
[
np.ma.masked_array([1, 2, 3], mask=[0, 0, 1], dtype=np.int64),
np.ma.masked_array(["a", "bc", "d"], mask=[0, 0, 1], dtype=np.str_),
],
[
np.ma.masked_array([1, 2, 3], mask=[0, 0, 1], dtype=np.int64),
np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float64),
np.array("a"),
],
[
np.array([1, 2, 3], dtype=np.int64),
np.ma.masked_array(["a", "bc", "d"], mask=[0, 0, 1], dtype=np.str_),
],
],
)
def test_broadcasting(arrays):
expected = np.broadcast_arrays(*arrays)
actual = ndx.broadcast_arrays(*[ndx.asarray(a) for a in arrays])
for e, a in zip(expected, actual):
assert a.shape == e.shape
@pytest.mark.parametrize(
"np_array",
[
np.ma.masked_array([1, 2, 3], mask=[0, 0, 1], dtype=np.int64),
np.ma.masked_array([1, 2, 3], mask=[0, 0, 1], dtype=np.float64),
np.ma.masked_array([1, 2]),
np.ma.masked_array(["a", "b"], mask=True),
np.ma.masked_array([1, 2, 3], mask=[[[0]]]),
np.ma.masked_array([[1, 2, 3]], mask=[True, False, True]),
np.ma.masked_array([1.0, 2.0, 3.0], mask=[0, 0, 1]),
],
)
def test_initialization(np_array):
actual = ndx.asarray(np_array)
null = actual.null
assert_array_equal(actual.unwrap_numpy(), np_array)
if null is None:
assert np_array.mask is np.ma.nomask
else:
np.testing.assert_equal(np_array.mask, null.unwrap_numpy())
@pytest.mark.parametrize(
"npdtype",
[
"int8",
"int16",
"int32",
"int64",
"uint8",
"uint16",
"uint32",
"uint64",
],
)
def test_masked_integer_to_datetime(npdtype):
arr = ndx.asarray(np.ma.MaskedArray([1, 2], mask=[False, True], dtype=npdtype))
expected = np.asarray([1, "NaT"], dtype="datetime64[s]")
candidate = arr.astype(ndx.DateTime64DType("s"))
np.testing.assert_array_equal(expected, candidate.unwrap_numpy())
def test_masked_int64_with_sentinel_to_datetime():
arr = ndx.asarray(
np.ma.MaskedArray(
[1, 2, np.iinfo(np.int64).min], mask=[False, True, False], dtype=np.int64
)
)
expected = np.asarray([1, "NaT", "NaT"], dtype="datetime64[s]")
candidate = arr.astype(ndx.DateTime64DType("s"))
np.testing.assert_array_equal(expected, candidate.unwrap_numpy())
def test_masked_float_to_datetime():
arr = ndx.asarray(
np.ma.MaskedArray([1, 2, np.nan], mask=[False, True, False], dtype=np.float64)
)
expected = np.asarray([1, "NaT", "NaT"], dtype="datetime64[s]")
candidate = arr.astype(ndx.DateTime64DType("s"))
np.testing.assert_array_equal(expected, candidate.unwrap_numpy())
def test_static_map_nutf8():
np_in = np.ma.MaskedArray(["foo", "bar", "baz"], mask=[0, 1, 0]) # type: ignore
arr = ndx.asarray(np_in)
candidate = ndx.extensions.static_map(arr, {"foo": "FOO", "bar": "BAR"})
assert candidate.dtype == ndx.nutf8
np.testing.assert_array_equal(
np_in.mask,
candidate.unwrap_numpy().mask, # type: ignore
)
np.testing.assert_array_equal(
["FOO", "MISSING"],
candidate.unwrap_numpy().data[~candidate.unwrap_numpy().mask], # type: ignore
)
def test_static_map_int64():
np_in = np.ma.MaskedArray([1, 2, 3], mask=[0, 1, 0], dtype=np.int64) # type: ignore
arr = ndx.asarray(np_in)
candidate = ndx.extensions.static_map(arr, {1: 10, 2: 20})
assert candidate.dtype == ndx.nint64
np.testing.assert_array_equal(
np_in.mask,
candidate.unwrap_numpy().mask, # type: ignore
)
np.testing.assert_array_equal(
[10, 0],
candidate.unwrap_numpy().data[~candidate.unwrap_numpy().mask], # type: ignore
)