-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseqsolver.cpp
412 lines (341 loc) · 9.04 KB
/
seqsolver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/*
pcudaSAT: Simulating an efficient solution to SAT with active membranes on the GPU
This simulator is published on:
J.M. Cecilia, J.M. García, G.D. Guerrero, M.A. Martínez-del-Amor, I. Pérez-Hurtado,
M.J. Pérez-Jiménez. Simulating a P system based efficient solution to SAT by using
GPUs, Journal of Logic and Algebraic Programming, 79, 6 (2010), 317-325
pcudaSAT is a subproject of PMCGPU (Parallel simulators for Membrane
Computing on the GPU)
Copyright (c) 2010 Miguel Á. Martínez-del-Amor (RGNC, University of Seville)
Ginés D. Guerrero (GACOP, University of Murcia)
This file is part of pcudaSAT.
pcudaSAT is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
pcudaSAT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with pcudaSAT. If not, see <http://www.gnu.org/licenses/>. */
#include "seqsolver.h"
#include <iostream>
#include <timestat.h>
using namespace std;
/********************/
/* GLOBAL VARIABLES */
int d=0;
int c=0;
int e=0;
bool size_exeeced (long unsigned int number_membr, unsigned int T) {
return (number_membr * T) + number_membr >= 3.5*1024*1024*1024;
}
void print(Object* multiset, unsigned int number_membranes, unsigned int T) {
cout << "Number of membranes: " << number_membranes << ", d" << d << ", c" << c << endl;
cout << "Multisets: ";
for (int i=0; i<number_membranes; i++) {
cout << "|"<< i << "|: ";
for (int j=0; j<T; j++) {
int o=i*T+j;
cout << get_variable(multiset[o]) << get_i(multiset[o]) << "," << get_j(multiset[o]) << " ";
}
if (i%8==7) cout << endl;
}
cout << endl;
}
/*************************/
/** STAGE 1: GENERATION **/
/** Divide every membrane to a new position and performs evolution for "r" objects.
Returns the new number of membranes
*/
unsigned int evolution_division (long unsigned int NM, unsigned int N, unsigned int T, Object * multiset) {
char var='\0';
Object cur=0;
short int i,j;
unsigned int pos=0,end=T-1;
// FOR EVERY MEMBRANE
for (long unsigned int m=0; m<NM; m++) {
pos=0;
end=T-1;
// FOR EVERY OBJECT
for (unsigned int o=0;o<T;o++) {
cur=multiset[m*T+o];
var=get_variable(cur);
// COPY THE OBJECTS AT THE BEGINNING
// OF THE NEW MEMBRANE
if (var!=0) {
if (var=='r') {
i=get_i(cur); j=get_j(cur);
if (j<=2*N-1) {
j++;
cur=object(var,i,j);
multiset[m*T+o]=cur;
}
}
multiset[(m+NM)*T + (pos++)]= cur;
}
// APPEND AT THE END THE EMPTY OBJECTS
else {
multiset[(m+NM)*T + (end--)]= cur;
}
}
}
return NM*2;
}
/** Perform de evolutions when the membranes has charges and d is sending out
*/
void evolution_sout_d(unsigned int cur_membr,unsigned int thresold,unsigned int T,Object * multiset) {
Object cur;
char var,charge;
short int i,j;
if (cur_membr < thresold) charge='+';
else charge='-';
for (unsigned int it=0;it<T;it++) {
cur=multiset[cur_membr*T+it];
var=get_variable(cur);
i=get_i(cur);
j=get_j(cur);
if (charge=='+'){
if (var == 'x' && j==1) {
var='r';
}
else if (var =='x') {
j--;
}
else if (var == 'y' && j==1) {
var=0;
i=j=0;
}
else if (var == 'y') {
j--;
}
}
else {
if (var == 'x' && j==1) {
var=0;
i=j=0;
}
else if (var =='x') {
j--;
}
else if (var == 'y' && j==1) {
var='r';
}
else if (var == 'y') {
j--;
}
}
multiset[cur_membr*T+it]=object(var,i,j);
}
}
/** Perform the evolutions when the d is sending in again to the membranes
*/
void evolution_sin_d(unsigned int cur_membr,unsigned int N,unsigned int T,Object * multiset) {
Object cur;
char var,charge;
short int i,j;
for (unsigned int it=0;it<T;it++) {
cur=multiset[cur_membr*T+it];
var=get_variable(cur);
j=get_j(cur);
if (var == 'r') {
if (j<=2*N-1) j++;
i=get_i(cur);
multiset[cur_membr*T+it]=object(var,i,j);
}
}
}
/** Performs the Generation Stage
*/
void generation (unsigned int N,unsigned int M,unsigned int T,unsigned int num_membr, Object * multiset) {
unsigned int num_membr_cur=1;
d=1;
while (d <= N-1) {
num_membr_cur = evolution_division(num_membr_cur,N,T,multiset);
//print (multiset,num_membr_cur,T);
for (unsigned int i=0; i < num_membr_cur; i++) {
evolution_sout_d(i,num_membr_cur/2,T,multiset);
evolution_sin_d(i,N,T,multiset);
}
d++;
}
num_membr_cur=evolution_division(num_membr_cur,N,T,multiset);
for (unsigned int i=0; i < num_membr_cur; i++) {
evolution_sout_d(i,num_membr_cur/2,T,multiset);
}
//print (multiset,num_membr_cur,T);
}
/********************************/
/*** STAGE 2: SYNCHRONIZATION ***/
/** Performs evolutions to r objects
and compact the elements of the multiset deleting null objects
*/
void evolution_r_compact(unsigned int N,unsigned int T,unsigned int num_membr,Object* multiset) {
unsigned int last=0;
char var;
short int i,j;
Object cur;
for (int m=0;m<num_membr;m++) {
last=0;
for (int o=0;o<T;o++) {
cur=multiset[m*T+o];
var=get_variable(cur);
if (var!=0){
j=get_j(cur);
if (j<=2*N-1) {
j++;
i=get_i(cur);
cur=object(var,i,j);
}
multiset[m*T+o]=0;
multiset[m*T+(last++)]=cur;
}
}
}
}
/** Performs evolutions to r objects
Assumes that the objects are compacted
*/
void evolution_r(unsigned int N,unsigned int T,unsigned int num_membr,Object* multiset) {
char var;
short int i,j;
Object cur;
for (int m=0;m<num_membr;m++) {
for (int o=0;o<T;o++) {
cur=multiset[m*T+o];
var=get_variable(cur);
if (var=='r'){
j=get_j(cur);
if (j<=2*N-1) {
j++;
i=get_i(cur);
multiset[m*T+o]=object(var,i,j);
}
}
else break;
}
}
}
/** Performs the Synchronization Stage
*/
void synchronization(unsigned int N,unsigned int T,unsigned int num_membr,Object* multiset) {
/* 1 computation step */
evolution_r_compact(N,T,num_membr,multiset);
d++;
/* Computation steps */
for (;d<=3*N-3;d++) {
evolution_r(N,T,num_membr,multiset);
}
/* 1 computation step */
evolution_r(N,T,num_membr,multiset);
d++;
c=1;
e=1;
//print (multiset,num_membr,T);
}
/***************************************/
/*** STAGE 3 and 4: Checking & Output***/
/** Performs the send out of objects r with i=1
Returns the charge of the membrane (if the send_out has been performed)
*/
char send_out_r1(unsigned int cur_membr,unsigned int N,unsigned int T,Object * multiset) {
char var;
short int i,j;
Object cur;
for (int o=0;o<T;o++) {
cur=multiset[cur_membr*T+o];
var=get_variable(cur);
if (var=='r'){
i=get_i(cur);
if (i==1) {
var='R'; // Indicates that r is in the skin
j=get_j(cur);
multiset[cur_membr*T+o]=object(var,i,j);
return '-';
}
}
else break;
}
return '+';
}
void evolution_sendin_r1(unsigned int cur_membr,char charge,unsigned int N,unsigned int T,Object * multiset) {
char var;
short int i,j;
Object cur;
if (charge == '+') return;
c++;
for (int o=0;o<T;o++) {
cur=multiset[cur_membr*T+o];
var=get_variable(cur);
if (var=='r'){
i=get_i(cur);
if (i>0) {
i--;
j=get_j(cur);
multiset[cur_membr*T+o]=object(var,i,j);
}
}
else if (var=='R') {
j=get_j(cur);
multiset[cur_membr*T+o]=object('r',0,j);
}
else break;
}
}
bool checking_output(unsigned int N,unsigned int M,unsigned int T,unsigned int num_membr,Object* multiset) {
int di=d;
int c_prev=c;
int cm1=0,cm2=0,t=0,ts=0,yes=0,no=0;
char charge='-';
for (int m=0;m<num_membr;m++){
c=c_prev;
charge='-';
for (di=d;di<=3*N+2*M+1;di++) { // actually 2*m steps
if (charge=='+') continue; // Optimization, when no '-', it will never be '-'
charge=send_out_r1(m,N,T,multiset);
evolution_sendin_r1(m,charge,N,T,multiset);
if (c==M+1) {
cm1++;
break;
}
}
}
if (cm1>0) {
cm2=cm1; t=cm1; cm1=0;
ts=1; t--;
yes=1; cm2--;
//cout << "Objects in the skin: t, yes" << endl;
}
else {
d++;
no=1;
//cout << "Objects in the skin: no" << endl;
}
return yes==1;
}
bool seq_solver(int N, int M, int T, Object * cnf) {
long int num_membr=(long int)pow(2,N);
bool sol;
//struct timeval tini, tfin;
double time;
//start_timer();
Object * multiset = new Object[num_membr*T];
for (int i=0; i<T; i++) {
multiset[i]=cnf[i];
}
//gettimeofday(&tini, NULL);
start_timer();
/* STAGE 1 */
generation(N,M,T,num_membr,multiset);
/* STAGE 2 */
synchronization(N,T,num_membr,multiset);
/* STAGE 3 */
sol=checking_output(N,M,T,num_membr,multiset);
//gettimeofday(&tfin, NULL);
//tiempo= (tfin.tv_sec - tini.tv_sec)*1000000 + tfin.tv_usec - tini.tv_usec;
time=end_timer();
cout << endl << "Execution time: " << time << " ms" << endl;
delete multiset;
return sol;
}