-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmean_shift.py
executable file
·197 lines (166 loc) · 7.76 KB
/
mean_shift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import math
import sys
import numpy
# This implementation of the Mean Shift clustering algorithm was written by Matt Nedrich
# and made freely available from his GitHub site. Profound thanks to Matt.
#
# This, Matt's version, is being used instead of the sklearn.cluster MeanShift class because sklearn
# doesn't work well with pyinstaller on windows systems - it generates a dependency on a multiprocessing
# dll but doesn't generate the correct dependency information to cause that dll to be included in the
# resulting executable.
#
# The following is the LICENSE text included with Matt's download for this software:
# The MIT License (MIT)
#
# Copyright (c) 2015 Matt Nedrich
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Several separate .py files in the downloaded program were merged into this single file
# import point_grouper as pg
# import mean_shift_utils as ms_utils
# imported from mean_shift_utils
# import mean_shift_utils as ms_utils
# Imported from former point_grouper file:
# Comments in the methods below are author Matt's
def euclidean_dist(point_a: numpy.ndarray,
point_b: numpy.ndarray) -> float:
if len(point_a) != len(point_b):
raise Exception("expected point dimensionality to match")
total = float(0)
for dimension in range(0, len(point_a)):
total += (point_a[dimension] - point_b[dimension]) ** 2
return math.sqrt(total)
def gaussian_kernel(distance: numpy.ndarray, bandwidth: float) -> numpy.ndarray:
euclidean_distance = numpy.sqrt((distance ** 2).sum(axis=1))
val = (1/(bandwidth*math.sqrt(2*math.pi))) * numpy.exp(-0.5 * (euclidean_distance / bandwidth) ** 2)
return val
def multivariate_gaussian_kernel(distances, bandwidths):
# Number of dimensions of the multivariate gaussian
dim = len(bandwidths)
# Covariance matrix
cov = numpy.multiply(numpy.power(bandwidths, 2), numpy.eye(dim))
# Compute Multivariate gaussian (vectorized implementation)
exponent = -0.5 * numpy.sum(numpy.multiply(numpy.dot(distances, numpy.linalg.inv(cov)), distances), axis=1)
val = (1 / numpy.power((2 * math.pi), (dim/2)) * numpy.power(numpy.linalg.det(cov), 0.5)) * numpy.exp(exponent)
return val
# End of import from pointgrouper file
GROUP_DISTANCE_TOLERANCE = .1
class PointGrouper(object):
def group_points(self, points: [[float]]) -> numpy.array:
group_assignment = []
groups = []
group_index = 0
for point in points:
nearest_group_index = self._determine_nearest_group(point, groups)
if nearest_group_index is None:
# create new group
groups.append([point])
group_assignment.append(group_index)
group_index += 1
else:
group_assignment.append(nearest_group_index)
groups[nearest_group_index].append(point)
return numpy.array(group_assignment)
def _determine_nearest_group(self, point: [float], groups: [[[float]]]) -> int:
nearest_group_index = None
index = 0
for group in groups:
distance_to_group = self._distance_to_group(point, group)
if distance_to_group < GROUP_DISTANCE_TOLERANCE:
nearest_group_index = index
index += 1
return nearest_group_index
def _distance_to_group(self, point: [float], group: [[float]]) -> float:
min_distance = sys.float_info.max
for pt in group:
dist = euclidean_dist(point, pt)
if dist < min_distance:
min_distance = dist
return min_distance
# end import from mean_shift_utils
# Original mean_shift file
MIN_DISTANCE = 0.000001
class MeanShift(object):
def __init__(self, kernel=gaussian_kernel):
if kernel == 'multivariate_gaussian':
kernel = multivariate_gaussian_kernel
self.kernel = kernel
def cluster(self, points: numpy.ndarray, kernel_bandwidth: float, iteration_callback=None):
if iteration_callback:
iteration_callback(points, 0)
shift_points = numpy.array(points)
max_min_dist = 1
iteration_number = 0
still_shifting = [True] * points.shape[0]
while max_min_dist > MIN_DISTANCE:
# print max_min_dist
max_min_dist = 0
iteration_number += 1
for i in range(0, len(shift_points)):
if not still_shifting[i]:
continue
p_new = shift_points[i]
p_new_start = p_new
p_new = self._shift_point(p_new, points, kernel_bandwidth)
dist = euclidean_dist(p_new, p_new_start)
if dist > max_min_dist:
max_min_dist = dist
if dist < MIN_DISTANCE:
still_shifting[i] = False
shift_points[i] = p_new
if iteration_callback:
iteration_callback(shift_points, iteration_number)
point_grouper = PointGrouper()
points_as_list: [[float]] = shift_points.tolist()
group_assignments = point_grouper.group_points(points_as_list)
return MeanShiftResult(points, shift_points, group_assignments)
def _shift_point(self, point: numpy.ndarray, points: numpy.ndarray, kernel_bandwidth: float) -> numpy.ndarray:
# from http://en.wikipedia.org/wiki/Mean-shift
points = numpy.array(points)
# numerator
point_weights = self.kernel(point-points, kernel_bandwidth)
tiled_weights = numpy.tile(point_weights, [len(point), 1])
# denominator
denominator = sum(point_weights)
shifted_point = numpy.multiply(tiled_weights.transpose(), points).sum(axis=0) / denominator
return shifted_point
# ***************************************************************************
# ** The above vectorized code is equivalent to the unrolled version below **
# ***************************************************************************
# shift_x = float(0)
# shift_y = float(0)
# scale_factor = float(0)
# for p_temp in points:
# # numerator
# dist = ms_utils.euclidean_dist(point, p_temp)
# weight = self.kernel(dist, kernel_bandwidth)
# shift_x += p_temp[0] * weight
# shift_y += p_temp[1] * weight
# # denominator
# scale_factor += weight
# shift_x = shift_x / scale_factor
# shift_y = shift_y / scale_factor
# return [shift_x, shift_y]
class MeanShiftResult:
def __init__(self, original_points: numpy.ndarray,
shifted_points: numpy.ndarray,
cluster_ids: numpy.ndarray):
self.original_points = original_points
self.shifted_points = shifted_points
self.cluster_ids = cluster_ids