-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
212 lines (177 loc) · 7.68 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
'''Train CIFAR10 with PyTorch.'''
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import quantization
import os
import argparse
from models import *
from utils import progress_bar, inplace_quantize_layers, enable_calibrate, disable_calibrate, calibrate_adaround, add_module_dict
parser = argparse.ArgumentParser(description='PyTorch MNIST QUANTIZE Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--type', choices=['fp32','PTQ','QAT'], help='choose train fp32, PTQ or QAT')
parser.add_argument('--resume', '-r', action='store_true',
help='resume from checkpoint')
parser.add_argument('--dorefa', '-d', action='store_true', help='use dorefa to quantizate')
parser.add_argument('--Histogram', action='store_true', help='use HistogramObserver to quantizate')
parser.add_argument('--omse', action='store_true', help='use omse to quantizate')
parser.add_argument('--lsq', action='store_true', help='use lsq to quantizate')
parser.add_argument('--bias_correction', action='store_true', help='use bias_correction to quantizate')
parser.add_argument('--level', default='L', choices=['L','C'], help='per_channel or per_tensor')
parser.add_argument('--path', default='./checkpoint/', help='model saved path')
parser.add_argument('--adaround', action='store_true', help='use adaround to quantizate')
parser.add_argument('--adaround-iter', default=1000, type=int)
parser.add_argument('--b_start', default=20, type=int, help='temperature at the beginning of calibration')
parser.add_argument('--b_end', default=2, type=int, help='temperature at the end of calibration')
parser.add_argument('--warmup', default=0.2, type=float, help='in the warmup period no regularization is applied')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
train_epochs = 20
# Data
print('==> Preparing data..')
trainset = torchvision.datasets.MNIST(
root='./data', train=True, download=True, transform=torchvision.transforms.ToTensor())
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.MNIST(
root='./data', train=False, download=True, transform=torchvision.transforms.ToTensor())
testloader = torch.utils.data.DataLoader(
testset, batch_size=100, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
# Model
print('==> Building model..')
net = VGG('VGG_s')
net = net.to(device)
# if device == 'cuda':
# net = torch.nn.DataParallel(net)
# cudnn.benchmark = True
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/ckpt.pth')
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
if args.type == "PTQ" or args.lsq:
checkpoint = torch.load('./checkpoint/ckpt.pth')
new_state_dict = add_module_dict(checkpoint['net'])
# net.load_state_dict(checkpoint['net'])
net.load_state_dict(new_state_dict)
if args.type == "PTQ" or args.type == "QAT":
net = inplace_quantize_layers(net, len(trainloader) * train_epochs, ptq = True if args.type == "PTQ" else False,
dorefa = args.dorefa, Histogram = args.Histogram, level = args.level, omse = args.omse,
adaround = args.adaround, bias_correction = args.bias_correction, lsq = args.lsq)
net = net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=train_epochs)
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
def calibrate():
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(trainloader):
if batch_idx == 10: break
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
def calibrate_ada(net):
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
if batch_idx == 10: break
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
return net
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
if args.type == 'fp32':
torch.save(state, './checkpoint/ckpt.pth')
else:
torch.save(state, './checkpoint/ckpt_q.pth')
best_acc = acc
for epoch in range(start_epoch, start_epoch + train_epochs):
if epoch == start_epoch:
enable_calibrate(net)
calibrate()
disable_calibrate(net)
if args.adaround:
calibrate_adaround(net, args.adaround_iter, args.b_start, args.b_end, args.warmup, trainloader, device)
test(epoch)
if args.type == "PTQ":
break
else:
train(epoch)
test(epoch)
scheduler.step()