-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.py
311 lines (247 loc) · 11.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author: Rao Yulong
from utils import *
from model import *
# from model_compara import Compare
# from model_SMGCN import SMGCN
import sys
import os
import parameter
import numpy as np
import pandas as pd
import random
import torch
from torch_geometric.data import Data
from sklearn.model_selection import train_test_split
from pytorchtools import EarlyStopping
import time
from sklearn.metrics import roc_auc_score
import types
from torch_sparse import SparseTensor
seed = 2021
np.random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.manual_seed(seed)
class Logger(object):
def __init__(self, filename="Default.log"):
self.terminal = sys.stdout
self.log = open(filename, "w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
pass
para = parameter.para(lr=3e-4, rec=7e-3, drop=0.0, batchSize=512, epoch=200, dev_ratio=0.2, test_ratio=0.2)
path = os.path.abspath(os.path.dirname(__file__))
type = sys.getfilesystemencoding()
sys.stdout = Logger('khdr.txt')
print(time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime()))
print("lr: ",para.lr, " rec: ", para.rec, " dropout: ",para.drop, " batchsize: ",
para.batchSize, " epoch: ",para.epoch, " dev_ratio: ",para.dev_ratio, " test_ratio: ", para.test_ratio)
"""创建3种图数据"""
# 读取S-H图
sh_edge = np.load('./data/sh_graph.npy')
sh_edge = sh_edge.tolist()
sh_edge_index = torch.tensor(sh_edge, dtype=torch.long)
sh_x = torch.tensor([[i] for i in range(1195)], dtype=torch.float)
sh_data = Data(x=sh_x, edge_index=sh_edge_index.t().contiguous())
sh_data_adj = SparseTensor(row=sh_data.edge_index[0], col=sh_data.edge_index[1],
sparse_sizes=(1195, 1195))
# S-S G
ss_edge = np.load('./data/ss_graph.npy')
ss_edge = ss_edge.tolist()
ss_edge_index = torch.tensor(ss_edge, dtype=torch.long)
ss_x = torch.tensor([[i] for i in range(390)], dtype=torch.float)
ss_data = Data(x=ss_x, edge_index=ss_edge_index.t().contiguous())
ss_data_adj = SparseTensor(row=ss_data.edge_index[0], col=ss_data.edge_index[1],
sparse_sizes=(390, 390))
# H-H G
hh_edge = np.load('./data/hh_graph.npy').tolist()
hh_edge_index = torch.tensor(hh_edge, dtype=torch.long) - 390 # 边索引需要减去390
hh_x = torch.tensor([[i] for i in range(390, 1195)], dtype=torch.float)
hh_data = Data(x=hh_x, edge_index=hh_edge_index.t().contiguous())
hh_data_adj = SparseTensor(row=hh_data.edge_index[0], col=hh_data.edge_index[1],
sparse_sizes=(805, 805))
# 读取处方数据
prescript = pd.read_csv('./data/prescript_1195.csv', encoding='utf-8')
pLen = len(prescript) # 数据集的数量
# 症状的one-hot 矩阵
pS_list = [[0]*390 for _ in range(pLen)]
pS_array = np.array(pS_list)
# 草药的one-hot 矩阵
pH_list = [[0] * 805 for _ in range(pLen)]
pH_array = np.array(pH_list)
# 迭代数据集, 赋值
for i in range(pLen):
j = eval(prescript.iloc[i, 0])
pS_array[i, j] = 1
k = eval(prescript.iloc[i, 1])
k = [x - 390 for x in k]
pH_array[i, k] = 1
# 读取中草药频率
herbCount = load_obj('./data/herbID2count')
herbCount = np.array(list(herbCount.values()))
# 读取KG中知识的独热编码
kg_oneHot = np.load('./data/herb_805_27_oneHot.npy')
kg_oneHot = torch.from_numpy(kg_oneHot).float()
# 训练集开发集测试集的下标
p_list = [x for x in range(pLen)]
x_train, x_dev_test = train_test_split(p_list, test_size= (para.dev_ratio+para.test_ratio), shuffle=False,
random_state=2021)
# print(len(x_train), len(x_dev_test))#
x_dev, x_test = train_test_split(x_dev_test, test_size=1 - 0.5, shuffle=False, random_state=2021)
print("train_size: ", len(x_train), "dev_size: ", len(x_dev), "test_size: ", len(x_test))
train_dataset = presDataset(pS_array[x_train], pH_array[x_train])
dev_dataset = presDataset(pS_array[x_dev], pH_array[x_dev])
test_dataset = presDataset(pS_array[x_test], pH_array[x_test])
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=para.batchSize)
dev_loader = torch.utils.data.DataLoader(dev_dataset, batch_size=para.batchSize)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=para.batchSize)
# print(len(test_loader))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = KDHR(390, 805, 1195, 64, para.batchSize, para.drop)
# model = KDHR(390, 805, 1195, 64)
criterion = torch.nn.BCEWithLogitsLoss(reduction="mean")
optimizer = torch.optim.Adam(model.parameters(), lr=para.lr, weight_decay=para.rec)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=7 , gamma=0.8)
early_stopping = EarlyStopping(patience=7, verbose=True)
print('device: ', device)
epsilon = 1e-13
for epoch in range(para.epoch):
model.train()
running_loss = 0.0
for i, (sid, hid) in enumerate(train_loader):
# sid, hid = sid.to(device), hid.to(device)
sid, hid = sid.float(), hid.float()
optimizer.zero_grad()
# batch*805 概率矩阵
outputs = model(sh_data.x, sh_data.edge_index, ss_data.x, ss_data.edge_index,
hh_data.x, hh_data.edge_index, sid, kg_oneHot)
# outputs = model(sh_data.x, sh_data_adj, ss_data.x, ss_data_adj, hh_data.x, hh_data_adj, sid)
loss = criterion(outputs, hid)
loss.backward()
optimizer.step()
running_loss += loss.item()
# print train loss per every epoch
print('[Epoch {}]train_loss: '.format(epoch + 1), running_loss / len(train_loader))
# print('[Epoch {}]train_loss: '.format(epoch + 1), running_loss / len(x_train))
# loss_list.append(running_loss / len(train_loader))
model.eval()
dev_loss = 0
dev_p5 = 0
dev_p10 = 0
dev_p20 = 0
dev_r5 = 0
dev_r10 = 0
dev_r20 = 0
dev_f1_5 = 0
dev_f1_10 = 0
dev_f1_20 = 0
for tsid, thid in dev_loader:
tsid, thid = tsid.float(), thid.float()
# batch*805 概率矩阵
outputs = model(sh_data.x, sh_data.edge_index, ss_data.x, ss_data.edge_index,
hh_data.x, hh_data.edge_index, tsid, kg_oneHot)
# outputs = model(sh_data.x, sh_data_adj, ss_data.x, ss_data_adj, hh_data.x, hh_data_adj, tsid)
dev_loss += criterion(outputs, thid).item()
# thid batch*805
for i, hid in enumerate(thid):
trueLabel = [] # 对应存在草药的索引
for idx, val in enumerate(hid): # 获得thid中值为一的索引
if val == 1:
trueLabel.append(idx)
top5 = torch.topk(outputs[i], 5)[1] # 预测值前5索引
count = 0
for m in top5:
if m in trueLabel:
count += 1
dev_p5 += count / 5
dev_r5 += count / len(trueLabel)
# dev_f1_5 += 2*(count / 5)*(count / len(trueLabel)) / ((count / 5) + (count / len(trueLabel)) + epsilon)
top10 = torch.topk(outputs[i], 10)[1] # 预测值前10索引
count = 0
for m in top10:
if m in trueLabel:
count += 1
dev_p10 += count / 10
dev_r10 += count / len(trueLabel)
# dev_f1_10 += 2 * (count / 10) * (count / len(trueLabel)) / ((count / 10) + (count / len(trueLabel)) + epsilon)
top20 = torch.topk(outputs[i], 20)[1] # 预测值前20索引
count = 0
for m in top20:
if m in trueLabel:
count += 1
dev_p20 += count / 20
dev_r20 += count / len(trueLabel)
# dev_f1_20 += 2 * (count / 20) * (count / len(trueLabel)) / ((count / 20) + (count / len(trueLabel)) + epsilon)
scheduler.step()
print('[Epoch {}]dev_loss: '.format(epoch + 1), dev_loss / len(dev_loader))
# print('[Epoch {}]dev_loss: '.format(epoch + 1), dev_loss / len(x_dev))
print('p5-10-20:', dev_p5 / len(x_dev), dev_p10 / len(x_dev), dev_p20 / len(x_dev))
print('r5-10-20:', dev_r5 / len(x_dev), dev_r10 / len(x_dev), dev_r20 / len(x_dev))
# print('f1_5-10-20: ', dev_f1_5 / len(x_dev), dev_f1_10 / len(x_dev), dev_f1_20 / len(x_dev))
print('f1_5-10-20: ',
2 * (dev_p5 / len(x_dev)) *(dev_r5 / len(x_dev))/((dev_p5 / len(x_dev))+(dev_r5 / len(x_dev))+ epsilon),
2 * (dev_p10 / len(x_dev)) *(dev_r10 / len(x_dev))/((dev_p10 / len(x_dev))+(dev_r10 / len(x_dev))+ epsilon),
2 * (dev_p20 / len(x_dev)) *(dev_r20 / len(x_dev))/((dev_p20 / len(x_dev))+(dev_r20 / len(x_dev))+ epsilon))
early_stopping(dev_loss / len(dev_loader), model)
if early_stopping.early_stop:
print("Early stopping")
break
print(time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime()))
# 获得 early stopping 时的模型参数
model.load_state_dict(torch.load('checkpoint.pt'))
model.eval()
test_loss = 0
test_p5 = 0
test_p10 = 0
test_p20 = 0
test_r5 = 0
test_r10 = 0
test_r20 = 0
test_f1_5 = 0
test_f1_10 = 0
test_f1_20 = 0
for tsid, thid in test_loader:
tsid, thid = tsid.float(), thid.float()
# batch*805 概率矩阵
outputs = model(sh_data.x, sh_data.edge_index, ss_data.x, ss_data.edge_index,hh_data.x, hh_data.edge_index, tsid, kg_oneHot)
test_loss += criterion(outputs, thid).item()
# thid batch*805
for i, hid in enumerate(thid):
trueLabel = [] # 对应存在草药的索引
for idx, val in enumerate(hid): # 获得thid中值为一的索引
if val == 1:
trueLabel.append(idx)
top5 = torch.topk(outputs[i], 5)[1] # 预测值前5索引
count = 0
for m in top5:
if m in trueLabel:
count += 1
test_p5 += count / 5
test_r5 += count / len(trueLabel)
top10 = torch.topk(outputs[i], 10)[1] # 预测值前10索引
count = 0
for m in top10:
if m in trueLabel:
count += 1
test_p10 += count / 10
test_r10 += count / len(trueLabel)
top20 = torch.topk(outputs[i], 20)[1] # 预测值前20索引
count = 0
for m in top20:
if m in trueLabel:
count += 1
test_p20 += count / 20
test_r20 += count / len(trueLabel)
print("----------------------------------------------------------------------------------------------------")
print('test_loss: ', test_loss / len(test_loader))
print('p5-10-20:', test_p5 / len(x_test), test_p10 / len(x_test), test_p20 / len(x_test))
print('r5-10-20:', test_r5 / len(x_test), test_r10 / len(x_test), test_r20 / len(x_test))
print('f1_5-10-20: ',
2 * (test_p5 / len(x_test)) * (test_r5 / len(x_test)) / ((test_p5 / len(x_test)) + (test_r5 / len(x_test))),
2 * (test_p10 / len(x_test)) * (test_r10 / len(x_test)) / ((test_p10 / len(x_test)) + (test_r10 / len(x_test))),
2 * (test_p20 / len(x_test)) * (test_r20 / len(x_test)) / ((test_p20 / len(x_test)) + (test_r20 / len(x_test))))