This code demonstrates a usage of cuBLAS DotEx
and DotcEx
function to apply the dot product to vector x and y
A = | 1.0 | 2.0 | 3.0 | 4.0 |
B = | 5.0 | 6.0 | 7.0 | 8.0 |
For DotcEx
A = | 1.1 + 1.2j | 2.3 + 2.4j | 3.5 + 3.6j | 4.7 + 4.8j |
B = | 5.1 + 5.2j | 6.3 + 6.4j | 7.5 + 7.6j | 8.7 + 8.8j |
These functions are an API generalization of the routines cublas<t>dot
and cublas<t>dotc
where input data, output data and compute type can be specified independently. Note: cublas<t>dotc
is dot product conjugated, cublas<t>dotu
is dot product unconjugated.
See documentation for further details.
All GPUs supported by CUDA Toolkit (https://developer.nvidia.com/cuda-gpus)
Linux
Windows
x86_64
ppc64le
arm64-sbsa
- A Linux/Windows system with recent NVIDIA drivers.
- CMake version 3.18 minimum
$ mkdir build
$ cd build
$ cmake ..
$ make
Make sure that CMake finds expected CUDA Toolkit. If that is not the case you can add argument -DCMAKE_CUDA_COMPILER=/path/to/cuda/bin/nvcc
to cmake command.
$ mkdir build
$ cd build
$ cmake -DCMAKE_GENERATOR_PLATFORM=x64 ..
$ Open cublas_examples.sln project in Visual Studio and build
$ ./cublas_DotEx_example
Sample example output:
A
1.00 2.00 3.00 4.00
=====
B
5.00 6.00 7.00 8.00
=====
Result
70.000000
$ ./cublas_DotcEx_example
Sample example output:
A
1.10 + 1.20j 2.30 + 2.40j 3.50 + 3.60j 4.70 + 4.80j
=====
B
5.10 + 5.20j 6.30 + 6.40j 7.50 + 7.60j 8.70 + 8.80j
=====
Result
178.440000+-1.600000j