forked from karpathy/nanoGPT
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathgpt_conf.py
345 lines (282 loc) · 11.3 KB
/
gpt_conf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
from dataclasses import dataclass, field, asdict, fields
from typing import List
import json
import math
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
n_layer: int = 12
n_head: int = 12
n_kv_group: int = 12
n_embd: int = 768
# Steering Vectors
## Where to intercept
apply_vector_at_layer_idx: int = None
obtain_vector_at_layer_idx: int = None
use_lsv: bool = False
lsv_index: int = None
lsv_dataset_num: int = None
lsv_variant: str = "one_hot"
apply_lsv_at_layer_idx: int = None
## Files to insert or obtain vectors from
apply_vector_file: str = None
apply_vector_scaling_factor: float = 1.0
obtain_vector_file: str = None
# If Factorizing:
n_embd_wte: int = None
# weight tying
n_embd_wte_scale_tying: bool = True
# wte import/export
import_wte_freeze: bool = False
import_wte_npy: str = None
export_wte_npy: str = None
export_wte_each_eval: bool = False
# scaling matrices import/export
import_scale_matrices_freeze: bool = False
import_scale_matrices_npz: str = None
export_scale_matrices_npz: str = None
export_scale_matrices_each_eval: bool = False
dropout: float = 0.0
window_size: int = None
use_flex_attn: bool = None
gate: bool = False
use_moe: bool = False
moe_layer_freq: int = 2
n_experts: int = 8
moe_top_k: int = 2
moe_router_scheme: str = "softmax"
# Logging options
softmax_io_logging: bool = False
consmax_beta_gamma_logging: bool = False
plot_statistics: bool = False
softmax_io_log_interval: int = 1
# Training options
## Gradient Checkpointing - More memory efficient (can do long contexts), but is slower
use_gradient_checkpointing: bool = False
recompute_backward_pass: bool = False
## Flash attention
disable_flash_attention: bool = False
# MLP Options
use_parallel_mlp: bool = False
mlp_variant: str = "mlp"
mlp_expansion_factor: int = 4
## KAN Option
kan_poly_order: int = 3
kan_base_activation: str = "silu"
kan_middle_layers: List[int] = field(default_factory=lambda: [])
# Shared parameters
# MLP
shared_mlp_size: int = 1
shared_mlp_sym: bool = False
# ATTN
shared_attn_size: int = 1
shared_attn_sym: bool = False
# Softmax Alternatives and Options
softmax_variant_attn: str = "softmax" # Choices: "softmax" "softermax" "sigsoftmax" "polymax" "strongermax" "consmax"
softmax_variant_output: str = "softmax" # Choices: "softmax" "softermax" "sigsoftmax" "polymax" "strongermax" "consmax"
## General Options
div_by_seq_len: bool = False # for supported functions will divide by seq length
## ConSmax Options
consmax_initial_beta: float = 2.0 # beta adjustment
consmax_initial_gamma: float = 100.0 # denominator adjustment
consmax_base: float = 2.0 # base to utilize for ConSmax
consmax_use_euler_base: bool = True # use 'e' as base for ConSmax, default
## ConSmaxV2 Special Options
consmax_per_head: bool = True # different beta gamma per head
consmax_v2_clamping: bool = True
consmax_v2_clamp_value: float = 80.0
## SaturatingConSmax Special options (otherwise same as ConSmax)
consmax_saturation: float = 11.0 # for SaturatingConSmax saturation point
consmax_learnable_beta: bool = True
consmax_learnable_gamma: bool = True
## Softermax options
softermax_use_xmax: bool = True # Softermax Option active is softermax selected - True: uses (x - x_max) normalization; False: removes normalization (potential overflow)
## Polymax options
polymax_x_intercept: float = -100.0
polymax_y_intercept: float = 1.0
polymax_power: float = 2.0
polymax_divisor: float = 1000.0
## SigSoftmaxBase
sigsoftmax_use_euler_base: bool = True # use 'e' as base for Constantmax
sigsoftmax_base: float = 2.0 # denominator to utilize for Constantmax
## Strongermax options
strongermax_strength: float = math.e
strongermax_div_by_sum_of_terms: bool = True
strongermax_divisor: float = 1.0
strongermax_use_xmax: bool = True
strongermax_xmax_guess: float = 1.0
strongermax_overflow_recompute: bool = False
strongermax_overflow_recompute_value: float = 88.0
strongermax_clamping: bool = False
strongermax_clamp_value: float = 88.0
strongermax_obo: float = 0.0
strongermax_use_learned_obo: bool = False
strongermax_temperature_factor: float = 1.0
strongermax_use_learned_temperature_factor: bool = False
## ExpPolymax options
exppolymax_use_euler_base: bool = True
exppolymax_base: float = math.e
exppolymax_y_intercept: float = 1.0
exppolymax_power: float = 2.0
exppolymax_divisor: float = 1.0
## Softplus options
softplus_divisor: float = 256.0
## ReLUMax options
relumax_divisor: float = 256.0
## ReLUMax options
relu2max_divisor: float = 256.0
## SigmoidMax options
sigmoidmax_divisor: float = 256.0
## Squareplus options
squareplus_divisor: float = 256.0
# Positional Embeddings Variations
use_abs_pos_embeddings: bool = True # Note: one can use this AND rotary embeddings
use_fire_embeddings: bool = False
shared_fire_embeddings: bool = False
use_rotary_embeddings: bool = False
sym_rot_num_angles: int = 512
rope_variant: str = "rope" # options: "shortrope", "rope"
rope_length: int = 8 # number of embeddings to use in shortrope
## Embedding Intialization Options
embedding_mean_init: float= 0.0
embedding_std_init: float= 0.02
## FIRE Options (Functional Interpolation for Relative Positional Encoding)
fire_log_bias: float = 1.0
fire_num_hidden_layers: int = 1
fire_mlp_width: int = 32
fire_init_c: float = 0.1
fire_init_L: float = 512.0
fire_outermost_sigma: bool = False
# Structuring Options, remember to compile the model
use_post_ln: bool = False
# Layernorm Alternatives and Options
norm_variant_attn: str = "rmsnorm"
norm_variant_output: str = "rmsnorm"
bias: bool = False # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
prmsnorm_pct: float = 0.0625
krmsnorm_num: float = 10
krmsnorm_quantize_type: str = 'int8'
krmsnorm_enable_gain: bool = True
krmsnorm_selection_type: str = 'last'
krmsnorm_recompute_percentage: float = 0.05
# Activation Alternatives
activation_variant: str = "gelu"
## Shifted Gelu
shifted_gelu_learnable_shift: bool = True
shifted_gelu_initial_shift: float = 0.0
## PiecewiseLearnableActivation - pla
pla_num_points: int = 7
pla_left_bound: float = -2.0
pla_right_bound: float = 2.0
## PiecewiseFullyLearnableActivation - pfla
pfla_num_points: int = 200
pfla_left_bound: float = -100.0
pfla_right_bound: float = 100.0
## PiecewiseFullyLearnableActivationLearnedEnds - pflale
pfla_le_num_points: int = 30
pfla_le_left_bound: float = -10.0
pfla_le_right_bound: float = 10.0
## LearnedSplineActivation - lsa
lsa_num_knots: int = 30
# Linear Alternatives
linear_variant_attn: str = "linear"
linear_variant_mlp: str = "linear"
linear_variant_q: str = None
linear_variant_k: str = None
linear_variant_v: str = None
linear_variant_attn_proj: str = None
linear_variant_mlp_up: str = None
linear_variant_mlp_down: str = None
## Linear Initialization Options
linear_mean_init: float= 0.0
linear_std_init: float= 0.02
# Quantizations
start_quant_level: float = 0
quant_scheduler: str = None
full_quant_iteration: int = None
# Needed for quant_level printing
eval_interval: int = 250
## Embedding Quantizations
quantize_wte: bool = False
quantize_wpe: bool = False
quantize_wte_method: str = "affine_quant"
quantize_wte_bits: int = 8
quantize_wpe_method: str = "affine_quant"
quantize_wpe_bits: int = 8
## Activation Quantizations
activations_quant_method: str = "affine_quant"
quantize_attn_act: bool = False
quantize_attn_act_bits: int = 8
quantize_attn_act_input: bool = False
quantize_attn_act_input_bits: int = None
quantize_attn_act_qk_mult_q_input: bool = False
quantize_attn_act_qk_mult_q_input_bits: int = None
quantize_attn_act_qk_mult_k_input: bool = False
quantize_attn_act_qk_mult_k_input_bits: int = None
quantize_attn_act_softmax_input: bool = False
quantize_attn_act_softmax_input_bits: int = None
quantize_attn_act_pv_mult_p_input: bool = False
quantize_attn_act_pv_mult_p_input_bits: int = None
quantize_attn_act_pv_mult_v_input: bool = False
quantize_attn_act_pv_mult_v_input_bits: int = None
quantize_attn_act_pv_mult_output: bool = False
quantize_attn_act_pv_mult_output_bits: int = None
quantize_attn_act_output: bool = False
quantize_attn_act_output_bits: int = None
quantize_mlp_act: bool = False
quantize_mlp_act_bits: int = 8
quantize_mlp_act_input: bool = False
quantize_mlp_act_input_bits: int = None
quantize_mlp_act_activation_input: bool = False
quantize_mlp_act_activation_input_bits: int = None
quantize_mlp_act_activation_output: bool = False
quantize_mlp_act_activation_output_bits: int = None
quantize_mlp_act_output: bool = False
quantize_mlp_act_output_bits: int = None
store_activations: bool = False
## Linear Quantizations
quantize_linear_method: str = "affine_quant"
quantize_linear_bits: int = 8
quantize_linear_attn_q_method: str = None
quantize_linear_attn_q_bits: int = None
quantize_linear_attn_k_method: str = None
quantize_linear_attn_k_bits: int = None
quantize_linear_attn_v_method: str = None
quantize_linear_attn_v_bits: int = None
quantize_linear_attn_proj_method: str = None
quantize_linear_attn_proj_bits: int = None
quantize_linear_mlp_up_method: str = None
quantize_linear_mlp_up_bits: int = None
quantize_linear_mlp_down_method: str = None
quantize_linear_mlp_down_bits: int = None
quantization_warmup_iters: int = 100
@classmethod
def from_json(cls, filename: str):
try:
with open(filename, 'r') as json_file:
config_dict = json.load(json_file)
# Get all field names of the dataclass
field_names = {f.name for f in fields(cls)}
# Filter the loaded dict to only include valid fields
filtered_dict = {k: v for k, v in config_dict.items() if k in field_names}
# Create and return a new instance
return cls(**filtered_dict)
except FileNotFoundError:
print(f"Error: File '{filename}' not found.")
return None
except json.JSONDecodeError:
print(f"Error: File '{filename}' is not a valid JSON file.")
return None
except TypeError as e:
print(f"Error: Invalid data in JSON file. {str(e)}")
return None
def to_json(self, filename: str):
"""
Function to save a GPTConfig object as json to be used for later model creation
input:
- fout: string = filename of saved config file
"""
conf_dict = asdict(self)
with open(filename, 'w') as json_file:
json.dump(conf_dict, json_file)