-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVadCollector.py
215 lines (193 loc) · 8.52 KB
/
VadCollector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import pdb
import os
import sys
import collections
import contextlib
import wave
import webrtcvad
from math import ceil, floor
class VadCollector(object):
def __init__(self, audio_path=None, aggressiveness=0, framesize=30, padding_width=300, thresh=0.9):
self.vad = webrtcvad.Vad(aggressiveness)
self.framesize = framesize
self.padding_width = padding_width
self.thresh = thresh
self.sample_width = 2
if audio_path:
self.set_audio(audio_path)
num_padding_frames = int(self.padding_width / self.framesize)
self.rt_buffer = collections.deque(maxlen=num_padding_frames)
self.rt_triggered = False
def rt_segmenter(self, cur_frame, audio_sample_rate):
self.audio_sample_rate = audio_sample_rate
is_voiced = self.vad.is_speech(cur_frame.bytes, self.audio_sample_rate)
if not self.rt_triggered:
self.rt_buffer.append([cur_frame, is_voiced])
num_voiced = len([f[0] for f in self.rt_buffer if f[1]])
if num_voiced > self.thresh * self.rt_buffer.maxlen:
vad_start = self.rt_buffer[0][0].timestamp
self.rt_triggered = True
self.rt_buffer.clear()
return (("vad_start", self.float_round(vad_start, 3)))
else:
self.rt_buffer.append([cur_frame, is_voiced])
num_unvoiced = len([f[0] for f in self.rt_buffer if not f[1]])
if num_unvoiced > self.thresh * self.rt_buffer.maxlen:
# 70 sec trailing silence needed for phonetic identification
vad_end = self.rt_buffer[int(70 / self.framesize)][0].timestamp
self.rt_triggered = False
self.rt_buffer.clear()
return (("vad_end", self.float_round(vad_end, 3)))
def clear_buffer(self):
if self.rt_triggered:
vad_end = self.rt_buffer[-1][0].timestamp
self.rt_triggered = False
self.rt_buffer.clear()
return (("vad_end", self.float_round(vad_end, 3)))
def set_audio(self, audio_path):
au = AudioUtil()
audio_data, self.audio_sample_rate = au.read_wave(
audio_path, vad_assert=True)
self.audio_frames = list(au.frame_generator(
self.framesize, audio_data, self.audio_sample_rate, self.sample_width))
def get_percentage(self):
num_padding_frames = int(self.padding_width / self.framesize)
ring_buffer = collections.deque(maxlen=num_padding_frames)
triggered = False
frame_count = 0
numerator = 0
denominator = 0
for frame in self.audio_frames:
is_voiced = self.vad.is_speech(frame.bytes, self.audio_sample_rate)
mess = ""
if is_voiced:
numerator += 1
denominator += 1
frame_count += 1
if not triggered:
ring_buffer.append([frame, is_voiced])
num_voiced = len([f[0] for f in ring_buffer if f[1]])
if num_voiced > self.thresh * ring_buffer.maxlen:
triggered = True
ring_buffer.clear()
else:
ring_buffer.append([frame, is_voiced])
num_unvoiced = len([f[0] for f in ring_buffer if not f[1]])
if num_unvoiced > self.thresh * ring_buffer.maxlen:
#vad_end = frame.timestamp + frame.duration
# need atleast 70msec for phonetic identification
triggered = False
ring_buffer.clear()
if triggered:
ring_buffer.clear()
return float(numerator) / denominator
def segment_bounds(self):
vad_list = []
num_padding_frames = int(self.padding_width / self.framesize)
ring_buffer = collections.deque(maxlen=num_padding_frames)
triggered = False
frame_count = 0
for frame in self.audio_frames:
is_voiced = self.vad.is_speech(frame.bytes, self.audio_sample_rate)
mess = ""
if is_voiced:
mess = "Frame " + str(frame_count) + " has speech"
else:
mess = "Frame " + str(frame_count) + " doesn't have speech"
print mess
frame_count += 1
if not triggered:
ring_buffer.append([frame, is_voiced])
num_voiced = len([f[0] for f in ring_buffer if f[1]])
if num_voiced > self.thresh * ring_buffer.maxlen:
vad_start = ring_buffer[0][0].timestamp
triggered = True
ring_buffer.clear()
else:
ring_buffer.append([frame, is_voiced])
num_unvoiced = len([f[0] for f in ring_buffer if not f[1]])
if num_unvoiced > self.thresh * ring_buffer.maxlen:
#vad_end = frame.timestamp + frame.duration
# need atleast 70msec for phonetic identification
vad_end = ring_buffer[
int(70 / self.framesize)][0].timestamp
triggered = False
vad_list.append((self.float_round(vad_start, 3),
self.float_round(vad_end, 3)))
ring_buffer.clear()
if triggered:
vad_end = frame.timestamp + frame.duration
vad_list.append((self.float_round(vad_start, 3),
self.float_round(vad_end, 3)))
ring_buffer.clear()
return vad_list
def excise(self, onset, offset):
# onset and offset are in msec
onset_frame = int(onset / self.framesize)
offset_frame = int(offset / self.framesize)
# print onset_frame, offset_frame
excised_frames = self.audio_frames[onset_frame:offset_frame + 1]
return b''.join([f.bytes for f in excised_frames])
def extract_segments(self):
vad_list = self.segment_bounds()
for onset, offset in vad_list:
yield (onset, offset, self.excise(onset * 1000, offset * 1000))
def float_round(self, num, places=0, direction=floor):
return direction(num * (10**places)) / float(10**places)
class Frame(object):
def __init__(self, bytes, timestamp, duration):
self.bytes = bytes
self.timestamp = timestamp
self.duration = duration
class AudioUtil(object):
def frame_generator(self, frame_size_ms, audio, sample_rate, sample_width=1):
n = int(sample_rate * (frame_size_ms / 1000.0) * float(sample_width))
offset = 0
timestamp = 0.0
duration = (float(n) / sample_rate) / float(sample_width)
while offset + n < len(audio):
yield Frame(audio[offset:offset + n], timestamp, duration)
timestamp += duration
offset += n
def read_wave(self, path, vad_assert=False):
with contextlib.closing(wave.open(path, 'rb')) as wf:
num_channels = wf.getnchannels()
if vad_assert:
assert num_channels == 1
sample_width = wf.getsampwidth()
if vad_assert:
assert sample_width == 2
sample_rate = wf.getframerate()
if vad_assert:
assert sample_rate in (8000, 16000, 32000)
pcm_data = wf.readframes(wf.getnframes())
return pcm_data, sample_rate
def write_wave(self, path, audio, sample_rate, num_channels=1, sample_width=1):
with contextlib.closing(wave.open(path, 'wb')) as wf:
wf.setnchannels(num_channels)
wf.setsampwidth(sample_width)
wf.setframerate(sample_rate)
wf.writeframes(audio)
def main(args):
if len(args) != 2:
sys.stderr.write(
'Usage: vadcollector.py <aggressiveness> <path to wav file>\n')
sys.exit(1)
framesize = 20 # in msec
padding_width = 300 # in msec
filename = os.path.basename(args[1])
basename = os.path.splitext(filename)[0]
vc = VadCollector(args[1], int(args[0]), framesize,
padding_width, thresh=0.9)
segments = vc.extract_segments()
for i, segment in enumerate(segments):
onset = segment[0]
offset = segment[1]
segment = segment[2]
path = basename + '_chunk-%002d.wav' % (i,)
print(' Writing %s spanning %10.2f sec to %10.2f sec' %
(path, onset, offset))
AudioUtil().write_wave(path, segment, vc.audio_sample_rate,
num_channels=1, sample_width=2)
if __name__ == '__main__':
main(sys.argv[1:])