-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgl8.py
747 lines (655 loc) · 26.3 KB
/
gl8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
#!/usr/bin/python3
# CHIP-8 Emulator Written in Python
# (C) Siddharth Gautam, 2024
# Usage: python gl8.py <PATH TO ROM>
# Hide PyGame splash
import os
os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide"
import pygame as pg
import numpy as np
from pygame.locals import DOUBLEBUF, OPENGL, HWSURFACE
import moderngl
import random
import sys
import io
def debug_print(s, end="\n"):
print(s, end=end)
# CHIP-8 Font Data
CHIP8_SYSTEM_FONT = [
0xF0, 0x90, 0x90, 0x90, 0xF0, # 0
0x20, 0x60, 0x20, 0x20, 0x70, # 1
0xF0, 0x10, 0xF0, 0x80, 0xF0, # 2
0xF0, 0x10, 0xF0, 0x10, 0xF0, # 3
0x90, 0x90, 0xF0, 0x10, 0x10, # 4
0xF0, 0x80, 0xF0, 0x10, 0xF0, # 5
0xF0, 0x80, 0xF0, 0x90, 0xF0, # 6
0xF0, 0x10, 0x20, 0x40, 0x40, # 7
0xF0, 0x90, 0xF0, 0x90, 0xF0, # 8
0xF0, 0x90, 0xE0, 0x90, 0xE0, # 9
0xF0, 0x90, 0xF0, 0x90, 0x90, # A
0xE0, 0x90, 0xE0, 0x90, 0xE0, # B
0xF0, 0x80, 0x80, 0x80, 0xF0, # C
0xE0, 0x90, 0x90, 0x90, 0xE0, # D
0xF0, 0x80, 0xF0, 0x80, 0xF0, # E
0xF0, 0x80, 0xF0, 0x80, 0x80, # F
]
CHIP8_BEEP_SOUND = [82, 73, 70, 70, 246, 0, 0, 0, 87, 65, 86, 69, 102, 109, 116,
32, 16, 0, 0, 0, 1, 0, 1, 0, 136, 21, 0, 0, 136, 21, 0, 0, 1,
0, 8, 0, 100, 97, 116, 97, 210, 0, 0, 0, 168, 140, 105, 121,
150, 126, 95, 99, 134, 141, 84, 89, 204, 154, 117, 102, 154,
149, 136, 108, 78, 161, 102, 102, 147, 44, 96, 166, 120, 70,
135, 89, 207, 129, 229, 72, 234, 175, 196, 91, 104, 123, 142,
125, 107, 25, 49, 202, 227, 44, 41, 177, 208, 127, 103, 119,
149, 167, 161, 153, 192, 213, 181, 160, 161, 171, 168, 150, 43,
48, 53, 58, 64, 68, 72, 75, 78, 81, 84, 87, 89, 92, 94, 96, 98,
100, 101, 103, 105, 106, 107, 109, 110, 111, 111, 111, 112, 113,
114, 115, 116, 140, 208, 203, 198, 194, 190, 184, 171, 169, 166,
164, 161, 176, 185, 181, 178, 175, 166, 129, 129, 129, 129, 129,
133, 134, 134, 133, 133, 130, 122, 122, 123, 123, 123, 111, 100,
102, 104, 105, 107, 115, 120, 121, 121, 122, 122, 131, 155, 153,
151, 149, 148, 146, 139, 131, 131, 131, 131, 130, 130, 130, 86,
89, 92, 95, 97, 99, 102, 104, 110, 114, 115, 116, 117, 118, 118,
119, 120, 123, 155, 153, 151, 149, 147, 145, 143, 142, 141, 139,
138, 137, 136, 135, 134, 133, 133, 132, 131, 131, 130, 130, 130,
129, 129, 129, 128, 128, 128, 128]
CHIP8_MAX_MEM = 4096
CHIP8_MAX_STK = 16
CHIP8_SCREEN_WIDTH = 64
CHIP8_SCREEN_HEIGHT = 32
CHIP8_PIXEL_SIZE = 16
# Cycles per sec, must be greater than 60 as 60 Hz is minimum
CHIP8_CYCLES_PER_SEC = 600
CHIP8_BURN_IN_TIME = 2000
CHIP8_KEYMAP = {
pg.K_1: 0,
pg.K_2: 1,
pg.K_3: 2,
pg.K_4: 3,
pg.K_q: 4,
pg.K_w: 5,
pg.K_e: 6,
pg.K_r: 7,
pg.K_a: 8,
pg.K_s: 9,
pg.K_d: 0xA,
pg.K_f: 0xB,
pg.K_z: 0xC,
pg.K_x: 0xD,
pg.K_c: 0xE,
pg.K_v: 0xF
}
# Shader section begins here
# There are two sets of shaders. The first set is the basic shader,
# the second set is the post-processing shader that gives the CRT effect
vertex_shader_basic = """
#version 330
in vec2 in_vert;
in vec2 in_texcoord;
out vec2 v_text;
void main() {
gl_Position = vec4(in_vert, 0.0, 1.0);
v_text = in_texcoord;
}
"""
## Sets the color of the monitor sprites
fragment_shader_screen = """
#version 330
uniform sampler2D Texture;
in vec2 v_text;
out vec4 f_color;
void main() {
float pixel = texture(Texture, vec2(v_text.x, 1 - v_text.y)).r;
if (pixel > 0.0) {
f_color = vec4(1.0, 0.80, 0.0, 1.0); // Golden for active pixels
} else {
f_color = vec4(0.0, 0.0, 0.0, 0.0); // Transparent for inactive pixels
}
}
"""
fragment_shader_basic = """
#version 330
uniform sampler2D Texture;
in vec2 v_text;
out vec4 f_color;
void main() {
f_color = texture(Texture, v_text);
}
"""
## The most important shader that makes the magic happen!
## Responsible for the CRT Effect
post_fragment_shader = """
#version 330
uniform sampler2D ScreenTexture;
uniform sampler2D PreviousFrame;
uniform float time;
uniform float current_frame_time;
uniform float previous_frame_time;
const float glow_size = 1.0 / 512.0;
const float intensity = 1.2;
const float flicker_fraction = 0.1;
const float flicker_speed = 20.0;
const float crt_noise_fraction = 0.20;
const float brightness_multiplier = 2.0;
const vec3 frame_color = vec3(0.5, 0.5, 0.51);
const vec3 back_color = vec3(0.4, 0.3, 0.0);
const vec3 noise_color = vec3(0.9, 0.8, 0.0);
float warp = 0.9;
float scan = 0.75;
float scanline_opacity = 0.1;
float scanline_density = 0.3;
float scanline_speed = 0.5;
float scanline_intensity = 0.15;
float scanline_spread = 0.2;
float vigenette_intensity = 0.25;
float vignette_brightness = 50.0;
// CRT Frame Settings
float frameShadowCoeff = 15.0;
float screenShadowCoeff = 15.0;
vec2 margin = vec2(0.03, 0.03);
in vec2 v_text;
out vec4 f_color;
vec4 burnInEffect(in vec2 uv, in sampler2D prev_frame, in sampler2D curr_frame)
{
vec4 old_color = texture(prev_frame, uv);
vec4 new_color = texture(curr_frame, uv);
highp float decay = clamp((1.0/(current_frame_time - previous_frame_time)) * 120.0, 0.0, 1.0);
old_color *= decay;
return max(old_color, new_color);
}
/* The CRT glowing text effect, downsample, then upscale to cause a glowy blur */
vec4 crtGlow(in sampler2D crt_texture, in vec2 uv, in float blurSize)
{
vec4 sum = vec4(0.0);
sum += texture(crt_texture, vec2(uv.x - 4.0*blurSize, uv.y)) * 0.05;
sum += texture(crt_texture, vec2(uv.x - 3.0*blurSize, uv.y)) * 0.09;
sum += texture(crt_texture, vec2(uv.x - 2.0*blurSize, uv.y)) * 0.12;
sum += texture(crt_texture, vec2(uv.x - blurSize, uv.y)) * 0.15;
sum += texture(crt_texture, vec2(uv.x, uv.y)) * 0.16;
sum += texture(crt_texture, vec2(uv.x + blurSize, uv.y)) * 0.15;
sum += texture(crt_texture, vec2(uv.x + 2.0*blurSize, uv.y)) * 0.12;
sum += texture(crt_texture, vec2(uv.x + 3.0*blurSize, uv.y)) * 0.09;
sum += texture(crt_texture, vec2(uv.x + 4.0*blurSize, uv.y)) * 0.05;
// blur in y (vertical)
// take nine samples, with the distance blurSize between them
sum += texture(crt_texture, vec2(uv.x, uv.y - 4.0*blurSize)) * 0.05;
sum += texture(crt_texture, vec2(uv.x, uv.y - 3.0*blurSize)) * 0.09;
sum += texture(crt_texture, vec2(uv.x, uv.y - 2.0*blurSize)) * 0.12;
sum += texture(crt_texture, vec2(uv.x, uv.y - blurSize)) * 0.15;
sum += texture(crt_texture, vec2(uv.x, uv.y)) * 0.16;
sum += texture(crt_texture, vec2(uv.x, uv.y + blurSize)) * 0.15;
sum += texture(crt_texture, vec2(uv.x, uv.y + 2.0*blurSize)) * 0.12;
sum += texture(crt_texture, vec2(uv.x, uv.y + 3.0*blurSize)) * 0.09;
sum += texture(crt_texture, vec2(uv.x, uv.y + 4.0*blurSize)) * 0.05;
vec4 result = sum * (intensity + flicker_fraction * intensity * sin(time*flicker_speed)) + brightness_multiplier * burnInEffect(uv, ScreenTexture, PreviousFrame);
return result;
}
float crtNoise(vec2 pos, float evolve) {
// Loop the evolution (over a very long period of time).
float e = fract((evolve*0.01));
// Coordinates
float cx = pos.x*e;
float cy = pos.y*e;
// Generate a "random" black or white value
return fract(23.0*fract(2.0/fract(fract(cx*2.4/cy*23.0+pow(abs(cy/22.4),3.3))*fract(cx*evolve/pow(abs(cy),0.050)))));
}
vec3 vigenette(in vec2 uv, in vec3 oricol)
{
float vig = (uv.x*uv.y - uv.x*uv.x*uv.y - uv.x*uv.y*uv.y + uv.x*uv.x*uv.y*uv.y) * vignette_brightness;
vig = pow(vig, vigenette_intensity);
return vig * oricol;
}
/*
The following code was borrowed from Cool-Retro-Term.
It creates a nice frame around the terminal screen.
*/
float rand(vec2 co)
{
return fract(sin(dot(co, vec2(12.9898, 78.233))) * 43758.5453);
}
float max2(vec2 v)
{
return max(v.x, v.y);
}
float min2(vec2 v)
{
return min(v.x, v.y);
}
float prod2(vec2 v)
{
return v.x * v.y;
}
float sum2(vec2 v)
{
return v.x + v.y;
}
vec2 positiveLog(vec2 x)
{
return clamp(log(x), vec2(0.0), vec2(100.0));
}
vec4 crtFrame(in vec2 staticCoords, in vec2 uv)
{
vec2 coords = uv * (vec2(1.0) + margin * 2.0) - margin;
vec2 vignetteCoords = staticCoords * (1.0 - staticCoords.yx);
float vignette = pow(prod2(vignetteCoords) * 15.0, 0.25);
vec3 color = frame_color.rgb * vec3(1.0 - vignette);
float alpha = 0.0;
float frameShadow = max2(positiveLog(-coords * frameShadowCoeff + vec2(1.0)) + positiveLog(coords * frameShadowCoeff - (vec2(frameShadowCoeff) - vec2(1.0))));
frameShadow = max(sqrt(frameShadow), 0.0);
color *= frameShadow;
alpha = sum2(1.0 - step(vec2(0.0), coords) + step(vec2(1.0), coords));
alpha = clamp(alpha, 0.0, 1.0);
alpha *= mix(1.0, 0.9, frameShadow);
float screenShadow = 1.0 - prod2(positiveLog(coords * screenShadowCoeff + vec2(1.0)) * positiveLog(-coords * screenShadowCoeff + vec2(screenShadowCoeff + 1.0)));
alpha = max(0.8 * screenShadow, alpha);
vec4 final_color = vec4(color*alpha, alpha);
return final_color;
}
/* End of cool-retro-term code */
void main() {
// squared distance from center
vec2 uv = v_text;
vec2 dc = abs(0.5-uv);
dc *= dc;
// warp the fragment coordinates
uv.x -= 0.5; uv.x *= 1.0+(dc.y*(0.3*warp)); uv.x += 0.5;
uv.y -= 0.5; uv.y *= 1.0+(dc.x*(0.4*warp)); uv.y += 0.5;
// sample inside boundaries, otherwise set to black
if (uv.y > 1.0 || uv.x < 0.0 || uv.x > 1.0 || uv.y < 0.0)
f_color = crtFrame(v_text, uv);
else
{
// determine if we are drawing in a scanline
float apply = abs(sin(v_text.y)*0.5*scan);
// sample the texture
f_color = vec4(mix(crtGlow(ScreenTexture, uv, glow_size).rgb, vec3(0,0,0),apply),1.0);
/* Add scanline */
f_color.rgb += fract(smoothstep(-1.0, 0.0, uv.y - 1.0 * fract(time * 0.1976))) * scanline_intensity * back_color;
/* Add noise */
f_color.rgb = mix(f_color.rgb, noise_color * crtNoise(uv, time), crt_noise_fraction);
f_color.rgb = vigenette(uv, f_color.rgb);
}
}
"""
# CHIP-8 CPU Object
class Chip8Machine:
def __init__(self):
# RAM & General Purpose Regs
self.memory = [0 for i in range(CHIP8_MAX_MEM)]
self.v = [0 for i in range(16)]
# IP (Instruction Pointer)
self.ip = 0
# Memory Access
self.i = 0
# Delay & Sound Timer
self.dt = 0
self.st = 0
# Stack
self.stack = [0 for i in range(CHIP8_MAX_STK)]
self.sp = 0
# Screen
self.screen = np.array([0 for _ in range(CHIP8_SCREEN_HEIGHT*CHIP8_SCREEN_WIDTH)], dtype=np.uint8)
# Keys
self.keys = [0 for i in range(16)]
# Waiting for keypress
self.wait_until_input = False
self.waiting_register = 0
self.redraw = False
def Initialize(self, rom_data):
# Load Font Data
for i in range(len(CHIP8_SYSTEM_FONT)):
self.memory[i] = CHIP8_SYSTEM_FONT[i]
# Load ROM data
for i in range(len(rom_data)):
self.memory[i+0x200] = rom_data[i]
# Jump!
self.ip = 0x200
def IsWaiting(self):
return self.wait_until_input
def ClearScreen(self):
self.screen = np.array([0 for _ in range(CHIP8_SCREEN_HEIGHT*CHIP8_SCREEN_WIDTH)], dtype=np.uint8)
# Ensure all reigsters stick to their limits
def MaintainSanity(self):
for i in range(0, 16):
self.v[i] = self.v[i] % 256
self.i = self.i % 4096
self.dt = self.dt % 256
self.st = self.st % 256
self.sp = self.sp % CHIP8_MAX_STK
self.ip = self.ip % 4096
def EmulateInstruction(self):
self.MaintainSanity()
debug_print(f'[{self.ip}] ', end="")
byte_immediate = self.memory[self.ip]
byte_next = self.memory[self.ip + 1]
instruction = (byte_immediate << 8) | byte_next
leading_nib = (instruction & 0xF000) >> 12
self.ip += 2
# One of CLS, SYS, or RET
if(leading_nib == 0):
match byte_next:
case 0xE0:
# CLS
debug_print('CLS')
self.ClearScreen()
case 0xEE:
# RET
debug_print('RET')
self.ip = self.stack[self.sp]
self.sp -= 1
case _:
# SYS 0NNN
debug_print(f'SYS {instruction & 0x0FFF}')
# JP NNN
elif(leading_nib == 1):
self.ip = instruction & 0x0FFF
debug_print(f'JP {instruction & 0x0FFF}')
# CALL NNN
elif(leading_nib == 2):
# Push the current IP to stack
self.sp += 1
self.stack[self.sp] = self.ip
self.ip = instruction & 0x0FFF
debug_print(f'CALL {instruction & 0x0FFF}')
# SE Vx, KK
elif(leading_nib == 3):
reg = (instruction & 0x0F00) >> 8
if(self.v[reg] == byte_next):
self.ip += 2
debug_print(f'SE V{reg}, {byte_next}')
# SNE Vx, KK
elif(leading_nib == 4):
reg = (instruction & 0x0F00) >> 8
if(self.v[reg] != byte_next):
self.ip += 2
debug_print(f'SNE V{reg}, {byte_next}')
# SE Vx, Vy
elif(leading_nib == 5):
reg1 = (instruction & 0x0F00) >> 8
reg2 = (instruction & 0x00F0) >> 4
if(self.v[reg1] == self.v[reg2]):
self.ip += 2
debug_print(f'SE V{reg1}, V{reg2}')
# LD Vx, KK
elif(leading_nib == 6):
reg = (instruction & 0x0F00) >> 8
self.v[reg] = byte_next
debug_print(f'LD V{reg}, {byte_next}')
# ADD Vx, KK
elif(leading_nib == 7):
reg = (instruction & 0x0F00) >> 8
self.v[reg] += byte_next
debug_print(f'ADD V{reg}, {byte_next}')
# 8XYN
elif(leading_nib == 8):
reg1 = (instruction & 0x0F00) >> 8
reg2 = (instruction & 0x00F0) >> 4
last_nib = instruction & 0x000F
match last_nib:
case 0:
self.v[reg1] = self.v[reg2]
debug_print(f'LD V{reg1}, V{reg2}')
case 1:
self.v[reg1] |= self.v[reg2]
debug_print(f'OR V{reg1}, V{reg2}')
case 2:
self.v[reg1] &= self.v[reg2]
debug_print(f'AND V{reg1}, V{reg2}')
case 3:
self.v[reg1] ^= self.v[reg2]
debug_print(f'XOR V{reg1}, V{reg2}')
case 4:
self.v[reg1] += self.v[reg2]
if(self.v[reg1] > 0xFF):
self.v[0xF] = 1
else:
self.v[0xF] = 0
debug_print(f'ADD V{reg1}, V{reg2}')
case 5:
old_reg1 = self.v[reg1]
old_reg2 = self.v[reg2]
self.v[reg1] -= self.v[reg2]
if(old_reg1 > old_reg2):
self.v[0xF] = 1
else:
self.v[0xF] = 0
debug_print(f'SUB V{reg1}, V{reg2}')
case 6:
self.v[0xF] = self.v[reg1] & 0x1
self.v[reg1] = self.v[reg1] >> 1
debug_print(f'SHR V{reg1}')
case 7:
old_reg1 = self.v[reg1]
old_reg2 = self.v[reg2]
self.v[reg1] = self.v[reg2] - self.v[reg1]
if(old_reg2 > old_reg1):
self.v[0xF] = 1
else:
self.v[0xF] = 0
debug_print(f'SUBN V{reg1}, V{reg2}')
case 0xE:
self.v[0xF] = self.v[reg1] & 0x1
self.v[reg1] = self.v[reg1] << 1
debug_print(f'SHL V{reg1}')
case _:
debug_print(f'Unknown Instruction for 0x08 class')
# SNE Vx, Vy
elif(leading_nib == 9):
reg1 = (instruction & 0x0F00) >> 8
reg2 = (instruction & 0x00F0) >> 4
if(self.v[reg1] != self.v[reg2]):
self.ip += 2
# LD I, NNN
elif(leading_nib == 0xA):
self.i = instruction & 0x0FFF
debug_print(f'LD I, {instruction & 0x0FFF}')
# JP V0, NNN
elif(leading_nib == 0xB):
self.ip = self.v[0] + (instruction & 0x0FFF)
debug_print(f'JP V0, {instruction & 0x0FFF}')
# RND Vx, KK
elif(leading_nib == 0x0C):
rnd = random.randint(0, 255)
kk = instruction & 0x00FF
reg = (instruction & 0x0F00) >> 8
self.v[reg] = rnd & kk
debug_print(f'RND V{reg}, {kk}')
# DRW Vx, Vy, n
elif(leading_nib == 0x0D):
self.v[0xF] = 0
regx = (instruction & 0x0F00) >> 8
regy = (instruction & 0x00F0) >> 4
n = (instruction & 0x000F)
x, y = (self.v[regx], self.v[regy])
x = x % CHIP8_SCREEN_WIDTH
y = y % CHIP8_SCREEN_HEIGHT
orig_x = x
for i in range(0, n):
pixel_row = self.memory[self.i + i]
for j in range(0, 8):
if(pixel_row & (0x80 >> j)):
if(self.screen[y*CHIP8_SCREEN_WIDTH + x] != 0):
self.v[0xF] = 1
self.screen[y*CHIP8_SCREEN_WIDTH + x] ^= 0xFF
x += 1
if(x >= CHIP8_SCREEN_WIDTH):
x = 0
y += 1
x = orig_x
if(y >= CHIP8_SCREEN_HEIGHT):
y = 0
self.redraw = True
debug_print(f'DRW V{regx}, V{regy}, {n}')
# 0x0E class instructions
elif(leading_nib == 0x0E):
reg = (instruction & 0x0F00) >> 8
match byte_next:
# SKP Vx
case 0x9E:
if(self.keys[self.v[reg] & 0x0F] == 1):
self.ip += 2
debug_print(f'SKP V{reg}')
case 0xA1:
if(self.keys[self.v[reg] & 0x0F] == 0):
self.ip += 2
debug_print(f'SKNP V{reg}')
case _:
debug_print(f'Unknown Instruction for 0x0E class')
# 0x0F class instructions
elif(leading_nib == 0x0F):
reg = (instruction & 0x0F00) >> 8
match byte_next:
case 0x07:
self.v[reg] = self.dt
debug_print(f'LD V{reg}, DT')
case 0x0A:
self.waiting_register = reg
self.wait_until_input = True
debug_print(f'WAITKEY V{reg}')
case 0x15:
self.dt = self.v[reg]
debug_print(f'LD DT, V{reg}')
case 0x18:
self.st = self.v[reg]
debug_print(f'LD ST, V{reg}')
case 0x1E:
self.i = self.i + self.v[reg]
debug_print(f'ADD I, V{reg}')
case 0x29:
self.i = 0x05 * (self.v[reg])
debug_print(f'LOADSPRITE V{reg}')
case 0x33:
self.memory[self.i + 2] = self.v[reg] % 10
self.memory[self.i + 1] = (self.v[reg] // 10) % 10
self.memory[self.i] = (self.v[reg] // 100) % 10
debug_print(f'STBCD V{reg}')
case 0x55:
for i in range(0, reg+1):
self.memory[self.i + i] = self.v[i]
debug_print(f'STREGS {reg}')
case 0x65:
for i in range(0, reg+1):
self.v[i] = self.memory[self.i + i]
debug_print(f'LDREGS {reg}')
case _:
debug_print(f'Unknown Instruction for 0x0F class')
def ReadChip8ROM(rom_file):
rom_data = None
try:
with open(rom_file, 'rb') as f:
rom_data = f.read()
except:
print(f'Error reading {rom_file}. Ensure the file exists.')
exit(-1)
return rom_data
def main(args):
if len(args) != 2:
print('Usage: python gl8.py <Chip 8 ROM>')
return
rom_data = ReadChip8ROM(args[1])
c8 = Chip8Machine()
c8.Initialize(rom_data)
# Begin setting up PyGame and OpenGL
pg.init()
pg.mixer.init()
pg.display.gl_set_attribute(pg.GL_MULTISAMPLEBUFFERS, 0)
pg.display.gl_set_attribute(pg.GL_MULTISAMPLESAMPLES, 0)
pygame_display = pg.display.set_mode((CHIP8_SCREEN_WIDTH * CHIP8_PIXEL_SIZE, CHIP8_SCREEN_HEIGHT * CHIP8_PIXEL_SIZE),
DOUBLEBUF | OPENGL | HWSURFACE)
pg.display.set_caption(f'GL8 Emulator | (C) Siddharth Gautam, 2024 | {os.path.basename(args[1]).upper()}')
pygame_clock = pg.time.Clock()
ctx = moderngl.create_context()
ctx.enable(moderngl.BLEND)
ctx.blend_func = (moderngl.SRC_ALPHA, moderngl.ONE_MINUS_SRC_ALPHA)
# Create the programs, one for rendering, one for post-processing
screen_render_program = ctx.program(vertex_shader=vertex_shader_basic, fragment_shader=fragment_shader_screen)
post_process_program = ctx.program(vertex_shader=vertex_shader_basic, fragment_shader=post_fragment_shader)
burnin_frame_program = ctx.program(vertex_shader=vertex_shader_basic, fragment_shader=fragment_shader_basic)
# Screen geometry, represented by two triangles
screen_geometry = np.array([
# x, y, tex_x, tex_y
-1.0, -1.0, 0.0, 0.0,
1.0, -1.0, 1.0, 0.0,
-1.0, 1.0, 0.0, 1.0,
1.0, 1.0, 1.0, 1.0,
], dtype='f4')
vbo = ctx.buffer(screen_geometry)
vao = ctx.vertex_array(screen_render_program, [(vbo, '2f 2f', 'in_vert', 'in_texcoord')])
# Create a framebuffer object for off-screen rendering
fbo_texture = ctx.texture((CHIP8_SCREEN_WIDTH * CHIP8_PIXEL_SIZE, CHIP8_SCREEN_HEIGHT * CHIP8_PIXEL_SIZE), 4)
fbo = ctx.framebuffer(color_attachments=[fbo_texture])
post_vao = ctx.vertex_array(post_process_program, [(vbo, '2f 2f', 'in_vert', 'in_texcoord')])
burnin_frame_vao = ctx.vertex_array(burnin_frame_program, [(vbo, '2f 2f', 'in_vert', 'in_texcoord')])
# Create texture which our screen will be rendered to
texture = ctx.texture((CHIP8_SCREEN_WIDTH, CHIP8_SCREEN_HEIGHT), 1, dtype='f1')
texture.filter = (moderngl.NEAREST, moderngl.NEAREST)
# Create a previous frame texture for burn in effect
previous_frame_texture = ctx.texture((CHIP8_SCREEN_WIDTH * CHIP8_PIXEL_SIZE,
CHIP8_SCREEN_HEIGHT * CHIP8_PIXEL_SIZE), 4)
previous_frame_fbo = ctx.framebuffer(color_attachments=[previous_frame_texture])
previous_frame_texture.filter = (moderngl.NEAREST, moderngl.NEAREST)
previous_frame_time = pg.time.get_ticks()
post_process_program['ScreenTexture'] = 0
post_process_program['PreviousFrame'] = 1
# Set up audio
beep_data = bytearray(CHIP8_BEEP_SOUND)
beep_virtual_file = io.BytesIO(beep_data)
beep_snd = pg.mixer.Sound(beep_virtual_file)
# Main loop
running = True
while running:
for ev in pg.event.get():
if ev.type == pg.QUIT:
running = False
# Input logic for the CHIP-8 System
elif ev.type == pg.KEYDOWN:
if ev.key == pg.K_ESCAPE:
running = False
if ev.key in CHIP8_KEYMAP:
c8.keys[CHIP8_KEYMAP[ev.key]] = 1
if c8.IsWaiting():
c8.v[c8.waiting_register] = CHIP8_KEYMAP[ev.key]
c8.wait_until_input = False
elif ev.type == pg.KEYUP:
if ev.key in CHIP8_KEYMAP:
c8.keys[CHIP8_KEYMAP[ev.key]] = 0
if(not c8.IsWaiting()):
for i in range(int(CHIP8_CYCLES_PER_SEC/60)):
c8.EmulateInstruction()
# Update the delay and sound timers
if(c8.dt > 0):
c8.dt -= 1
if(c8.st > 0):
if not pg.mixer.get_busy():
# If sound is not playing, play it!
beep_snd.play()
c8.st -= 1
current_time = pg.time.get_ticks()
# Clear the previous frame buffer if we are past 500ms of delay
if(current_time - previous_frame_time >= CHIP8_BURN_IN_TIME):
previous_frame_time = current_time
previous_frame_fbo.use()
ctx.clear(0.0, 0.0, 0.0, 0.0)
# Write to previous frame (for burn-in effect)
previous_frame_fbo.use()
fbo_texture.use(location=0)
burnin_frame_vao.render(moderngl.TRIANGLE_STRIP)
# Write the CHIP-8 screen
texture.write(c8.screen.tobytes())
# Render to internal FBO
fbo.use()
ctx.clear(0.0, 0.0, 0.0, 0.3)
texture.use()
vao.render(moderngl.TRIANGLE_STRIP)
# Update the time variable in the post-process shader
post_process_program['time'] = current_time / 1000.0
post_process_program['current_frame_time'] = current_time
post_process_program['previous_frame_time'] = previous_frame_time
# Now render to screen with the post-processing shader
ctx.screen.use()
fbo_texture.use(location=0)
previous_frame_texture.use(location=1)
post_vao.render(moderngl.TRIANGLE_STRIP)
pg.display.flip()
pygame_clock.tick(60)
if __name__ == '__main__':
main(sys.argv)