-
Notifications
You must be signed in to change notification settings - Fork 4
/
Cox_Galois_Chapter1.tex
1067 lines (817 loc) · 41.4 KB
/
Cox_Galois_Chapter1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%&LaTeX
\documentclass[11pt,a4paper]{article}
\usepackage[frenchb,english]{babel}
\usepackage[applemac]{inputenc}
\usepackage[OT1]{fontenc}
\usepackage[]{graphicx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{amssymb}
%\input{8bitdefs}
% marges
\topmargin 10pt
\headsep 10pt
\headheight 10pt
\marginparwidth 30pt
\oddsidemargin 40pt
\evensidemargin 40pt
\footskip 30pt
\textheight 670pt
\textwidth 420pt
\def\imp{\Rightarrow}
\def\gcro{\mbox{[\hspace{-.15em}[}}% intervalles d'entiers
\def\dcro{\mbox{]\hspace{-.15em}]}}
\newcommand{\be} {\begin{enumerate}}
\newcommand{\ee} {\end{enumerate}}
\newcommand{\deb}{\begin{eqnarray*}}
\newcommand{\fin}{\end{eqnarray*}}
\newcommand{\ssi} {si et seulement si }
\newcommand{\D}{\mathrm{d}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\re}{\,\mathrm{Re}\,}
\newcommand{\ord}{\mathrm{ord}}
\newcommand{\legendre}[2]{\genfrac{(}{)}{}{}{#1}{#2}}
\title{Solutions to David A.Cox "Galois Theory''}
\author{Richard Ganaye, Serguei Pykhov}
\begin{document}
\maketitle
\section{Chapter 1}
\subsection{CARDAN'S FORMULAS}
\paragraph{Ex. 1.1.1}
{\it Complete the demonstration (begun in the text) that the substitution $x = y-b/3$ transforms $x^3+bx^2+cx+d$ into $y^3+py+q$, where $p$ and $q$ are given by (1.2).
}
\begin{proof}
The equation $Ax^3+Bx^2+Cx+D=0$ ($A,B,C,D \in \mathbb{C},A\neq 0$) becomes, after division by $A$,
$$x^3+bx^2+cx+d = 0.$$
with $b=B/A,c=C/A,d=D/A.$
The substitution $x = y-\frac{b}{3}$ gives
\begin{align*}
x\ & = y-\frac{b}{3},\\
x^2 &= y^2 -\frac{2b}{3} y +\frac{b^2}{9},\\
x^3 &= y^3 -by^2+\frac{b^2}{3} y - \frac{b^3}{27},
\end{align*}
so
\begin{align*}
&x^3+bx^2+cx+d\\
&=\left(y^3 -by^2+\frac{b^2}{3} y - \frac{b^3}{27}\right) +b\left(y^2 -\frac{2b}{3} y +\frac{b^2}{9}\right)+c\left(y-\frac{b}{3}\right) +d\\
&=y^3 +\left(-\frac{b^2}{3}+c \right) y + \left(\frac{2b^3}{27}-\frac{bc}{3}+d\right).
\end{align*}
In conclusion, if $x = y-\frac{b}{3}$, the equation $x^3+bx^2+cx+d = 0$ is equivalent to the equation
$$y^3+py+q=0,$$
where
\begin{align*}
p &= -\frac{b^2}{3}+c, \\
q &= \frac{2b^3}{27}-\frac{bc}{3}+d,
\end{align*}
which is the equation (1.2).
Relatively to the first coefficients $A,B,C,D$ we obtain
\begin{align*}
p &= -\frac{B^2}{3A^2} + \frac{C}{A} = \frac{-B^2+3AC}{3A^2},\\
q &= \frac{2B^3}{27A^3} - \frac{BC}{3A^2} + \frac{D}{A} = \frac{2B^3-9ABC+27 A^2D}{27A^3}.
\end{align*}
\end{proof}
\paragraph{Ex. 1.1.2}
{\it In Example 1.1.1, show that $y_2$ and $y_3$ are complex conjugates of each other.
}
\begin{proof}
$z_1 = \sqrt[3]{\frac{-1+\sqrt{5}}{2}}$ and $z_2 = \sqrt[3]{\frac{-1-\sqrt{5}}{2}}$ are the real cube roots of $\frac{-1+\sqrt{5}}{2}$ and $\frac{-1-\sqrt{5}}{2}$.
Then
\begin{align*}
y_2 &= \omega z_1 +\omega^2 z_2,\\
y_3 &= \omega^2 z_1 +\omega z_2,\\
\end{align*}
are complex conjugates.
Indeed, $ \omega^3 =1$, so $\omega^2 = \frac{1}{\omega} = \overline{\omega}$, since $\omega \overline{\omega} = \vert \omega \vert ^2= 1$.
Moreover $\overline{\omega^2} = \overline{\omega}^2 = \omega^4 = \omega$.
Consequently
\begin{align*}
\overline{y_2} &= \overline{\omega}\, \overline{z_1} + \overline{\omega}^2\, \overline{z_2}\\
&= \omega^2 z_1 + \omega z_2\\
&=y_3.
\end{align*}
\end{proof}
\paragraph{Ex. 1.1.3}
{\it Show that Cardan's formulas give the roots of $y^3+py+q$ when $p=0$.
}
\begin{proof}
We choose a root of $q^2$ by writing $\sqrt{q^2} = q$ (the other choice $-q$ only exchange the two terms of the sum giving $y_1$, and exchange $y_2,y_3$).
If $p=0$,
\begin{align*}
\sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}=\sqrt[3]{-\frac{q}{2}+\frac{q}{2}} &= 0,\\
\sqrt[3]{-\frac{q}{2}-\sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}=\sqrt[3]{-\frac{q}{2}-\frac{q}{2}} &= \sqrt[3]{-q}.\\
\end{align*}
Thus $y_1 = \sqrt[3]{-q}, y_2 = \omega^2 \sqrt[3]{-q}, y_3 = \omega \sqrt[3]{-q}$.
These are the roots of $y^3 + q=0$ : the Cardan's formulas, established for $p\neq 0$, remain true if $p=0$.
\end{proof}
\paragraph{Ex. 1.1.4}
{\it Verify the formulas for $y_2$ and $y_3$ in Example 1.1.2.
}
\begin{proof}
The solutions of the equation $y^3 - 3y=0$ are $0,\pm \sqrt{3}$.
Here $p/3=-1$ and $q/2=0$, so the Cardan's formulas give, with the choice $\sqrt{-1} = i$,
$$z_1 = \sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}= \sqrt[3]{i}.$$
As $(-i)^3 = i$, we can choose $z_1 = \sqrt[3]{i} = -i$, which implies the value $z_2 = \sqrt[3]{-i} = i$, since $z_1z_2 = -p/3=1$.
The Cardan's formulas give
\begin{align*}
y_1 &= -i+i =0,\\
y_2 &= -i \omega + i \omega^2,\\
y_3 &= -i \omega^2 + i \omega.
\end{align*}
So $y_2 = -i \omega + i \omega^2 = -i\omega+i(-1-\omega) = -i(2\omega+1)$.
As $\omega = -\frac{1}{2}+ i \frac{\sqrt{3}}{2}$, so $2 \omega +1 = i\sqrt{3}$, $y_2 = \sqrt{3}$, and $y_3 = -y_2 = -\sqrt{3}$.
$$y_1=0 , y_2 = \sqrt{3}, y_3 = -\sqrt{3}.$$
The Cardan's formulas give the three real roots of $y^3-3y=0$, with intermediate steps in the complex field.
\end{proof}
\paragraph{Ex. 1.1.5}
{\it The substitution $x= y - b/3$ can be adapted to other equations as follows.
\begin{enumerate}
\item[(a)]
Show that $x=y - b/2$ gets rid of the coefficient of $x$ in the quadratic equation $x^2+bx+c=0$. Then use this to derive the quadratic formula.
\item[(b)]For the quartic equation $x^4+bx^3+cx^2+dx+e=0$,what substitution should you use to
get rid of the coefficient of $x^3$?
\item[(c)] Explain how part (b) generalizes to a monic equation of degree $n$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)] The substitution $x = y - b/2$ in the equation $x^2+bx+c=0$ gives
\begin{align*}
0 &= x^2 + bx +c \\
&=\left ( y - \frac{b}{2}\right )^2 + b \left ( y - \frac{b}{2}\right ) + c\\
&=y^2 - \frac{b^2}{4} + c.
\end{align*}
This last equation has two solutions
$$y = \pm \frac{1}{2} \sqrt{b^2-4c}.$$
The two solutions of the equation $x^2+bx+c=0$ are so
$$x = \frac{-b \pm \sqrt{b^2-4c}}{2}.$$
\item[(b)] The substitution $x = y-b/4$ in $x^4+bx^3+cx^2+dx+e=0$ gets rid of the coefficient of $y^3$.
\item[(c)] More generally, the substitution $x= y - a_{n-1}/n$ in the equation
$$x^n + a_{n-1} x^{n-1}+ \cdots + a_0.$$
gets rid of the coefficient of $y^{n-1}$ in the transformed equation.
\end{enumerate}
\end{proof}
\paragraph{Ex. 1.1.6}
{\it Consider the equation $x^3+x-2 = 0$. Note that $x=1$ is a root.
\begin{enumerate}
\item[(a)] Use Cardan's formulas (carefully) to derive the surprising formula
$$1 = \sqrt[3]{1 + \frac{2}{3} \sqrt{\frac{7}{3}}} + \sqrt[3]{1 - \frac{2}{3} \sqrt{\frac{7}{3}}}$$
\item[(b)] Show that $1 + \frac{2}{3} \sqrt{\frac{7}{3}} = \left(\frac{1}{2}+ \frac{1}{2}\sqrt{\frac{7}{3}} \right)^3$, and use this to explain the result of part (a).
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)] The polynomial $x^3+x-2 = (x-1)(x^2+x+2)$ has a unique real root $1$, since the discriminant of $x^2+x+2$ is negative.
As $p/3=1/3,q/2=-1$,
\begin{align*}
z_1 &= \sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}
= \sqrt[3]{1+\sqrt{1 +\frac{1}{27}}},\\
z_1&= \sqrt[3]{1 + \frac{2}{3} \sqrt{\frac{7}{3}}},\\
z_2 &= \sqrt[3]{1 - \frac{2}{3} \sqrt{\frac{7}{3}}}.
\end{align*}
The roots of $x^3+x-2$ are
\begin{align*}
x_1 &= z_1 + z_2,\\
x_2 &= \omega z_1 + \omega^2 z_2,\\
x_3 &= \omega^2 z_1 + \omega z_2.
\end{align*}
As $z_1 + z_2$ is real, it is the unique real root of $x^3+x-2$, so
$$1 = \sqrt[3]{1 + \frac{2}{3} \sqrt{\frac{7}{3}}} + \sqrt[3]{1 - \frac{2}{3} \sqrt{\frac{7}{3}}}.$$
\item[(b)]
\begin{align*}
\left(\frac{1}{2}+ \frac{1}{2}\sqrt{\frac{7}{3}} \right)^3 &= \frac{1}{8} \left(1 + \sqrt{\frac{7}{3}}\right)^3\\
&=\frac{1}{8} \left( 1 + 3\sqrt{\frac{7}{3}} + 3 \frac{7}{3} + \frac{7}{3}\sqrt{\frac{7}{3}}\right)\\
&=1 + \frac{1}{8}\left(3 + \frac{7}{3} \right)\sqrt{\frac{7}{3}}\\
&=1 + \frac{2}{3} \sqrt{\frac{7}{3}}.
\end{align*}
So $\sqrt[3]{1 + \frac{2}{3} \sqrt{\frac{7}{3}}} = \frac{1}{2}+ \frac{1}{2}\sqrt{\frac{7}{3}} $, and similarly $\sqrt[3]{1 - \frac{2}{3} \sqrt{\frac{7}{3}}} = \frac{1}{2}- \frac{1}{2}\sqrt{\frac{7}{3}} $.
Consequently,
$$\sqrt[3]{1 + \frac{2}{3} \sqrt{\frac{7}{3}}} + \sqrt[3]{1 - \frac{2}{3} \sqrt{\frac{7}{3}}} = \frac{1}{2}+ \frac{1}{2}\sqrt{\frac{7}{3}}+ \frac{1}{2}- \frac{1}{2}\sqrt{\frac{7}{3}} = 1.$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 1.1.7}
{\it Cardan's formulas, as stated in the text, express the roots as sums of two cube roots. Each cube root has three values, so there are nine different possible values for the sum of the cube roots. Show hat these nine values are the roots of the equations $y^3+py+q=0, y^3+\omega py+q$, and $y^3+\omega^2py+q=0$,where as usual $\omega = \frac{1}{2}(-1 + i \sqrt{3})$.
}
\begin{proof}
The nine possible sums of two cube roots are
\begin{align*}
&y_1 = z_1 + z_2, &y_4 = \omega z_1+\omega z_2 = \omega y_1,\hspace{1cm} &y_7 = \omega^2z_1+\omega^2 z_2 = \omega^2 y_1,\\
&y_2=\omega z_1+\omega^2 z_2, &y_5 = \omega^2z_1+z_2=\omega y_2, \hspace{1cm} &y_8 = z_1+\omega z_2=\omega^2 y_2,\\
&y_3= \omega^2z_1+\omega z_2, &y_6 = z_1+\omega^2z_2 = \omega y_3 \hspace{1cm} &y_9 = \omega z_1+z_2 = \omega^2 y_3.
\end{align*}
Let $t=\omega y$. Then
$y^3+py+q=0$ is equivalent to $\left ( \frac{t}{\omega} \right )^3+ p \left ( \frac{t}{\omega} \right )+q = 0$, so is equivalent to $t^3+\omega^2 t +q=0$.
Consequently $y_4,y_5,y_6$ are the roots of the polynomial $y^3 + \omega^2 p y + q$.
For the same reason, $y_7,y_8,y_9$ are the roots of the polynomial $y^3 + \omega p y +q$.
\end{proof}
\paragraph{Ex. 1.1.8}
{\it Use Cardan's formulas to solve $y^3+3\omega y+1 = 0$.
}
\begin{proof}
The equation $y^3+3\omega y +1 =0$, with the substitution $$t = \omega y, y =\omega^2 t,$$ becomes
$$t^3+3t+1 = 0.$$
With $p/3 = 1, q/2 = 1/2$, the Cardan's formulas give
\begin{align*}
z_1 &= \sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}\\
z_1 &=\sqrt[3]{\frac{-1+\sqrt{5}}{2}}\\
z_2 &=\sqrt[3]{\frac{-1-\sqrt{5}}{2}}\\
\end{align*}
The roots of $t^3+3t+1$ are $z_1+z_2,\omega z_1+\omega^2 z_2,\omega^2 z_1 + \omega z_2$.
Thus the roots of $y^3+3\omega y + 1$ are $\omega^2 z_1 + \omega^2 z_2,z_1 + \omega z_2, \omega z_1 + z_2$.
The solutions of $y^3+3\omega y +1 =0$ are
\begin{align*}
&y_1 = \omega^2 \sqrt[3]{\frac{-1+\sqrt{5}}{2}} + \omega ^2 \sqrt[3]{\frac{-1-\sqrt{5}}{2}},\\
&y_2 = \sqrt[3]{\frac{-1+\sqrt{5}}{2}} + \omega \sqrt[3]{\frac{-1-\sqrt{5}}{2}},\\
&y_3 = \omega \sqrt[3]{\frac{-1+\sqrt{5}}{2}} + \sqrt[3]{\frac{-1-\sqrt{5}}{2}}.\\
\end{align*}
\end{proof}
\subsection{PERMUTATIONS OF THE ROOTS}
\paragraph{Ex. 1.2.1}
{\it Let $z_1,z_2$ be the roots of (1.9) chosen at the beginning of the section
\begin{enumerate}
\item[(a)] Show that $z_1,z_2,\omega z_1,\omega z_2, \omega^2 z_1, \omega^2 z_2$ are the six roots of the cubic resolvent.
\item[(b)] Prove (1.10)
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)] If $p=0$, by (1.7) and Ex. 1.1.3, $\{z_1,z_2\} = \{0,\sqrt[3]{-q}\}$, so $z_1,z_2$ are the solutions of the equation $ 0 = z^6+qz^3-\frac{p^3}{27} = z^6+qz^3$.
We suppose now that $p\neq 0$.
By definition $z_1, z_2$ are such that
\begin{align}
&z_1 z_2 = -\frac{p}{3}, \label{eq:1}\\
&z_1^6+qz_1^3-\frac{p^3}{27}=0.\label{eq:2}
\end{align}
Let $Z_1=z_1^3,Z_2=z_2^3$. Then
\begin{align}
&Z_1 Z_2 = -\frac{p^3}{27}\label{eq:3}\\
&Z_1^2+qZ_1-\frac{p^3}{27}=0\label{eq:4}
\end{align}
As $p\neq 0$, then $Z_1\neq 0$ by \eqref{eq:4}, and using \eqref{eq:3} and \eqref{eq:4},
$$Z_1+Z_2 = Z_1 -\frac{p^3}{27Z_1} = \frac{1}{Z_1}\left(Z_1^2 -\frac{p^3}{27}\right) = \frac{1}{Z_1}(-q Z_1) = -q.$$
Thus, for all $Z \in \mathbb{C}$,
\begin{align}
(Z-Z_1)(Z-Z_2)=Z^2-(Z_1+Z_2)Z+Z_1Z_2 = Z^2+qZ-\frac{p^3}{27}, \label{eq:5}
\end{align}
and so
$$Z_2^2+qZ_2-\frac{p^3}{27}=0,$$
$$z_2^6+qz_2^3-\frac{p^3}{27} = 0.$$
$z_2$ is a root of the resolvent equation.
By (5) the resolvent equation is
\begin{align}
0 = z^6+qz^3-\frac{p^3}{27} = (z^3-z_1^3)(z^3-z_2^3).
\end{align}
The solutions of this equation are so $z_1,z_2,\omega z_1,\omega z_2,\omega^2 z_1,\omega^2 z_2$.
\item[(b)] By 1.2 A :
\begin{align*}
&z_1 = \frac{1}{3}(x_1+\omega^2 x_2+\omega x_3),\\
&z_2 = \frac{1}{3}(x_1+\omega^2 x_3+\omega x_2).
\end{align*}
Multiplying by $\omega$, and by $\omega^2$ :
\begin{align*}
&\omega z_1 = \frac{1}{3}(x_2+\omega^2 x_3+\omega x_1),\\
&\omega z_2 = \frac{1}{3}(x_3+\omega^2 x_2+\omega x_1),\\
&\omega^2 z_1 = \frac{1}{3}(x_3+\omega^2 x_1+\omega x_2),\\
&\omega^2 z_2 = \frac{1}{3}(x_2+\omega^2 x_1+\omega x_2).
\end{align*}
\end{enumerate}
\end{proof}
\paragraph{Ex. 1.2.2}
{\it Prove (1.14) and (1.15)
}
\begin{proof}
We know by 1.2(B) that
$$z_1-z_2 = \frac{-i}{\sqrt{3}}(x_2-x_3).$$
By (1.10) :
\begin{align*}
z_1 - \omega z_2 &= \frac{1}{3}\left [ (x_1 + \omega^2 x_2+\omega x_3) - (x_3+\omega^2 x_2 + \omega x_1) \right]\\
&=\frac{1}{3}(1-\omega)(x_1-x_3).
\end{align*}
and
\begin{align*}
\frac{1}{3}(1-\omega) &= \frac{1}{3} \left(1 - e^{2i\pi/3} \right)\\
&= \frac{1}{3} e^{i\pi/3} \left( e^{-i\pi/3} - e^{i\pi/3}\right)\\
&= \frac{1}{3} \omega^2 \left( e^{i\pi/3} - e^{-i\pi/3}\right)\\
&=\frac{2}{3} i \sin (\pi/3) \, \omega^2\\
&= \frac{i}{\sqrt{3}}\, \omega^2.
\end{align*}
So
$$z_1 - \omega z_2 = \frac{i}{\sqrt{3}}\, \omega^2 (x_1-x_3).$$
Similarly
\begin{align*}
z_1 - \omega^2 z_2 &= \frac{1}{3}\left [ (x_1 + \omega^2 x_2+\omega x_3) - (x_2+\omega^2 x_1 + \omega x_3) \right]\\
&=\frac{1}{3}(1-\omega^2)(x_1-x_2),
\end{align*}
and $\frac{1}{3}(1-\omega^2) = \overline{\frac{1}{3}(1-\omega) } = \overline{\frac{i}{\sqrt{3}}\, \omega^2} =-\frac{i}{\sqrt{3}}\, \omega.$
Thus
$$z_1 - \omega^2 z_2 = -\frac{i}{\sqrt{3}}\, \omega (x_1-x_2).$$
Using these three results,
\begin{align*}
\sqrt{D} &= z_1^3 - z_2^3 = (z_1-z_2)(z_1-\omega z_2)(z_1-\omega^2 z_2)\\
&=\frac{-i}{\sqrt{3}} \frac{i}{\sqrt{3}}\, \omega^2 \left( -\frac{i}{\sqrt{3}}\, \omega\right) (x_1-x_2)(x_1-x_3)(x_2-x_3)\\
&=-\frac{i}{3\sqrt{3}} (x_1-x_2)(x_1-x_3)(x_2-x_3),\\
\end{align*}
which is the formula (1.15).
\end{proof}
\paragraph{Ex. 1.2.3}
{\it Prove (1.20)
}
\begin{proof}
By (1.17), $\Delta = -4p^3-27q^2$.
Using (1.19), we obtain
\begin{align*}
p^3 &= \left( - \frac{b^2}{3}+c\right)^3\\
&=-\frac{b^6}{27} + \frac{1}{3} b^4c - b^2c^2 + c^3,\\
-4p^3 &= \frac{4}{27}b^6 - \frac{4}{3} b^4c +4 b^2c^2 -4 c^3,\\
\end{align*}
\begin{align*}
q^2 &= \left(\frac{2b^3}{27} - \frac{bc}{3} + d \right)^2\\
&=\frac{4}{27^2} b^6 +\frac{b^2c^2}{9} + d^2 -\frac{4b^4c}{3\times 27} + \frac{4b^3d}{27} - \frac{2bcd}{3}\\
-27q^2&= -\frac{4}{27} b^6 - 3 b^2c^2 - 27 d^2+ \frac{4}{3} b^4c - 4 b^3d + 18bcd.\\
\end{align*}
So
\begin{align*}
\Delta&= -4p^3-27q^2\\
&= b^2c^2 + 18bcd-4c^3-4b^3d-27d^2.
\end{align*}
\end{proof}
\paragraph{Ex. 1.2.4}
{\it We say that a cubic $x^3+bx^2+cx+d$ has a multiple root if it can be written as $(x-r_1)^2(x-r_2)$. Prove that $x^3+bx^2+cx+d$ has a multiple root if and only if its discriminant is zero.
}
\begin{proof}
Let $f(x) = x^3+bx^2+cx+d$.
If $r_1,r_2$ are such that $f(x) = (x-r_1)^2(x-r_2)$, naming the roots $x_1=r_1, x_2=r_1,x_3 = r_2$, we obtaint $x_1=x_2$, so
$$\Delta= (x_1-x_2)^2(x_1-x_3)^2(x_2-x_3)^2 = 0.$$
Reciprocally, if $\Delta = 0$, then $x_1=x_2$, or $x_1=x_3$, or $x_2=x_3$.
In the first case let $r_1=x_1, r_2=x_3$. Then
$$f(x) = (x-x_1)(x-x_2)(x-x_3) = (x-r_1)^2(x-x_2),$$
and similarly in the two other cases.
\end{proof}
\paragraph{Ex. 1.2.5}
{\it Since $\Delta = (x_1-x_2)^2(x_1-x_3)^2(x_2-x_3)^2$, we can define the square root of $\Delta$ to be $\sqrt{\Delta} = (x_1-x_2)(x_1-x_3)(x_2-x_3)$. Prove that an even permutation of the roots takes $\sqrt{\Delta}$ to $\sqrt{\Delta}$ while an odd permutation takes $\sqrt{\Delta}$ to $-\sqrt{\Delta}$. In section 2.4 we will see that this generalizes nicely to the case of degree $n$.
}
\begin{proof}
By definition,
$$\sqrt{\Delta} = (x_1-x_2)(x_1-x_3)(x_2-x_3).$$
If $\sigma \in S_3$, we define $$\sigma \cdot \sqrt{\Delta} = (x_{\sigma(1)}-x_{\sigma(2)})(x_{\sigma(1)}-x_{\sigma(3)})(x_{\sigma(2)}-x_{\sigma(3)}).$$
If $\tau = (1\ 2)$,
$$\tau \cdot \sqrt{\Delta} = (x_2-x_1)(x_2-x_3)(x_1-x_3) = -\sqrt{\Delta}.$$
Same result if $\tau = (1\ 3)$, or $\tau = (2\ 3)$.
If $\sigma = (1\ 2\ 3)$,
$$\sigma \cdot \sqrt{\Delta} = (x_2-x_3)(x_2-x_1)(x_3-x_1) = \sqrt{\Delta},$$
with the same result if $\sigma = (1 3 2)$ (and also if $\sigma$ is identity).
In conclusion,
$\sigma \cdot \sqrt{\Delta} = \sqrt{\Delta} $ if $\sigma$ is even,
$\sigma \cdot \sqrt{\Delta} =- \sqrt{\Delta} $ if $\sigma$ is odd.
\end{proof}
\subsection{CUBIC EQUATIONS OVER THE REAL NUMBERS}
\paragraph{Ex. 1.3.1}
{\it Let $f(x) =y^3+py+q = (y-y_1)(y-y_2)(y-y_3)$, and set
$$\Delta = (y_1-y_2)^2(y_1-y_3)^2(y_2-y_3)^2.$$
The goal of this exercise is to give a different proof of (1.22).
\begin{enumerate}
\item[(a)] Use the product rule to show that $f'(y_1) = (y_1-y_2)(y_1-y_3)$, where $f'$ denotes the derivative of $f$. Also derive similar formulas for $f'(y_2)$ and $f'(y_3)$.
\item[(b)] Conclude that $\Delta = -f'(y_1)f'(y_2)f'(y_3)$. Be sure to explain where the minus sign comes from.
\item[(c)] The quadratic $f'(y) = 3y^2+p$ factors as $f'(y) = 3(y-\alpha)(y-\beta)$, where $\alpha = \sqrt{-p/3}$ and $\beta = - \sqrt{-p/3}$ (when $p>0$, we let $\sqrt{-p/3} = i\sqrt{p/3}$). Prove that $\Delta = -27 f(\alpha)f(\beta)$.
\item[(d)] Use $f(y) = y^3 + py +q$ and $\alpha = \sqrt{-p/3}$ to show that
$$f(\alpha) = (\sqrt{-p/3})^3 + p\sqrt{-p/3} + q = (2/3)p\sqrt{-p/3} + q.$$
Similarly, show that $f(\beta) = -(2/3) p \sqrt{-p/3}+q$.
\item[(e)] By combining parts (c) and (d), conclude that $\Delta = -4p^3-27q^2$.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
If $y_1, y_2,y_3$ are the complex roots of $f(y)= y^3+py+q \in \R[y]$, then
\begin{align*}
f(y)&= y^3+py+q=(y-y_1)(y-y_2)(y-y_3),\\
f'(y)&=(y-y_2)(y-y_3)+(y-y_1)(y-y_3)+(y-y_1)(y-y_2),
\end{align*}
thus
\begin{align*}
f'(y_i) = \prod_{j\neq i}(y_i-y_j),\ i=1,2,3,
\end{align*}
explicitly
\begin{align*}
f'(y_1) = (y_1-y_2)(y_1-y_3),\\
f'(y_2) = (y_2-y_1)(y_2-y_3),\\
f'(y_3) = (y_3-y_1)(y_3-y_2).\\
\end{align*}
\item[(b)] Therefore
\begin{align*}
f'(y_1)f'(y_2)f'(y_3) &= [-(y_1-y_2)^2][-(y_1-y_3)^2][-(y_2-y_3)^2]\\
&=-\Delta,
\end{align*}
so
$$\Delta = -f'(y_1)f'(y_2)f'(y_3).$$
\item[(c)] Since $f'(y) = 3y^2 + p =3(y-\alpha)(y-\beta)$, where $\alpha =\sqrt{-p/3}, \beta = - \sqrt{-p/3}$,
\begin{align*}
\Delta&=-(3y_1^2+p)(3y_2^2+p)(3y_3^2+p)\\
&=-27(y_1-\alpha)(y_1-\beta)(y_2-\alpha)(y_2-\beta)(y_3-\alpha)(y_3-\beta)\\
&=-27f(\alpha)f(\beta).
\end{align*}
\item[(d)] Since $f(y) = y^3 + py +q$,
\begin{align*}
f(\alpha) &=\left(\sqrt{-p/3}\right)^3 + p(\sqrt{-p/3})+q\\
&=(-p/3+p)\sqrt{-p/3}+q\\
&=(2/3)p\sqrt{-p/3}+q,
\end{align*}
and similarly $f(\beta) = f(-\alpha) = -(2/3)p\sqrt{-p/3}+q$.
\item[(e)] By combining parts (c) and (d),
\begin{align*}
\Delta&=-27f(\alpha)f(\beta)\\
&=-27\left\{q^2-\left[(2/3)p\sqrt{-p/3}\right]^2\right\}\\
&=-27\left[q^2 -\frac{4}{9}p^2\left(-\frac{p}{3}\right)\right]\\
&=-4p^3-27q^2.
\end{align*}
Conclusion : the discriminant of $y^3+py+q$ is $$\Delta = -4p^3-27q^2.$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 1.3.2}
{\it Let $f(y) = y^3+py+q$. The purpose of Exercises 2 to 5 is to prove Theorem 1.3.1 geometrically using graphing techniques. The proof breaks up into three cases corresponding to $p>0,p=0$, and $p<0$. This exercise will consider the case $p>0$.
\begin{enumerate}
\item[(a)] Explain why $\Delta <0$.
\item[(b)] Analyse the sign of $f'(y)$, and show that $f(y)$ is always increasing.
\item[(c)] Explain why $f(y)$ has only one real root.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
As $p>0$, $-4p^3<0$, and $-27q^2\leq 0$, thus $\Delta = -4p^3-27q^2<0$.
\item[(b)]
For all $y\in \mathbb{R}$, $f'(y) = 3y^2+p>0$, thus $f$ is strictly increasing on $\mathbb{R}$.
\item[(c)]
As $f$ is strictly increasing on $\mathbb{R}$, $f$ is injective (one to one).
Moreover $\lim\limits_{y\to +\infty} f(y) = +\infty$, and $\lim\limits_{y\to -\infty} f(y) = -\infty$, so there exists $y_1$ such that $f(y_1)<0$ and there exists $y_2$ such that $f(y_2)>0$. As $f$ is a continuous function, the intermediate values theorem gives the existence of a real root of $f$. As $f$ is injective, this is the only real root.
\end{enumerate}
\end{proof}
\paragraph{Ex. 1.3.3}
{\it Next, consider the case $p=0$.
\begin{enumerate}
\item[(a)] Explain why $\Delta<0$.
\item[(b)] Explain why $f(y)$ has only one real root.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)] $\Delta = -4q^2 \leq 0$
The hypothesis of theorem 1.3.1 is $\Delta \neq 0$, so $\Delta <0$.
\item[(b)]
For all $y \in \mathbb{R}$, $f'(y) = 3y^2 \geq 0$ and $f'(y) = 0$ only if $y=0$, so $f$ is strictly increasing. With the same argument already given in Ex. 1.3.2, $f$ has a unique real root, written $\sqrt[3]{-q}$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 1.3.4}
{\it Finally, consider the case $p<0$. In this case $f'(y) = 3y^2+p$ has roots $\alpha = \sqrt{-p/3}$ and $\beta = - \sqrt{-p/3}$, which are real and distinct.
\begin{enumerate}
\item[(a)] Show that the graph of $f(y)$ has a local minimum at $\alpha$ and a local maximum at $\beta$. Thus $f(\alpha)$ is a local minimum value and $f(\beta)$ is a local maximum value. Also show that $f(\alpha)<f(\beta)$.
\item[(b)] Explain why $f(y)$ has three real roots if $f(\alpha)$ and $f(\beta)$ have opposite signs and has one real root if they have the same sign. Illustrate your answer with a drawing of the three cases that can occur.
\item[(c)] Conclude that $f(y)$ has three real roots if and only if $f(\alpha)f(\beta)<0$.
\item[(d)] Finally, use part (c) of Exercise 1 to show that the roots are all real if and only if $\Delta >0$.
\end{enumerate}
}
\begin{proof}
Case $p<0$.
\begin{enumerate}
\item[(a)]
$f'(y) = 3y^2+p < 0 \iff y^2<-p/3 \iff \beta < f'(y) < \alpha\ (\alpha = \sqrt{-p/3} = -\beta)$.
$f$ is strictly increasing on $]-\infty,\beta]$ and on $[\alpha, +\infty[$, strictly decreasing on $[\beta,\alpha]$. $\beta$ is a local maximum, and $\alpha$ a local minimum. As $f$ is decreasing on $[\beta,\alpha]$, $f(\beta) > f(\alpha)$.
\item[(b)] As $f$ is continuous, and $\lim\limits_{y\to +\infty} f(y) = +\infty$, $\lim\limits_{y\to -\infty} f(y) = -\infty$ and $f$ strictly monotonous on each interval $]-\infty,\beta],[\beta,\alpha],[\alpha, +\infty[$, the intermediate value theorem gives three roots if $f(\alpha)f(\beta)<0$, and a unique root if $f(\alpha) f(\beta)>0$.
If $f(\alpha)f(\beta) = 0$, then $\Delta = -27 f(\alpha)f(\beta) = 0$ (Ex.1 c), which we can exclude by hypothesis.
\item[(c)] As these cases are mutually exclusive, (b) proves that $f$ has 3 real roots iff $f(\alpha)f(\beta)<0$.
\item[(d)]
By Ex. 1.3.2 and 1.3.3, we know that $p\geq 0$ imply that $f$ has a unique real root.
If $f$ has 3 distinct real roots, then $\Delta \neq 0$ (Ex.1.2.4), $p<0$, and (c) show that $f(\alpha)f(\beta) <0$, thus $\Delta = -27 f(\alpha)f(\beta) >0$.
Conversely, if $\Delta>0$, then $p<0$ and $f(\alpha)f(\beta)<0$. By (c), we know that $f$ has 3 real roots.
Conclusion : $f$ has three distinct real roots iff $\Delta >0$.
\end{enumerate}
\end{proof}
\paragraph{Ex. 1.3.5}
{\it Explain how Theorem 1.3.1 follows from Exercises 2,3, and 4.
}
\begin{proof}
With the hypothesis $\Delta \neq 0$, $f(y) = y^3+py+q$ has three distinct roots (Ex 1.2.4). We have proved in Ex. 1.3.4 that $\Delta >0$ iff the three roots of $f$ are real: This is the part (a) of Theorem 1.3.1.
If there exists a non real complex root, Ex.4(d) show that $\Delta <0$.
Reciprocally, if $\Delta <0$, there exists a non real root $y_1$, and $y_2 = \overline{y_1}$ is a root of $f$, with $y_2 \ne y_1$. As $f$ has always a real root by Ex. 2,3,4, $f$ has so exactly one real root, and two non real conjugate roots. This is the part (b) of the theorem.
\end{proof}
\paragraph{Ex. 1.3.6}
{\it Prove (1.24) : $z_1z_2 = -\frac{p}{3} \Rightarrow z_2 = \overline{z_1}$.
}
\begin{proof}
In the context of paragraph 1.3.A,
$$z_1 = \sqrt[3]{\frac{1}{2}\left(-q+i\sqrt{\frac{\Delta}{27}} \right)}, z_2 = \sqrt[3]{\frac{1}{2}\left(-q-i\sqrt{\frac{\Delta}{27}} \right)}, \qquad p,q \in \R,\ \Delta>0.$$
We know $z_1z_2 = -\frac{p}{3}$.
Then $z_1^3 = \overline{z_2}^3$, so $z_1 = \omega^k \, \overline{z_2},\ k=0,1,2$. Therefore
$$-\frac{p}{3} = z_1 z_2 = \omega^k \, \overline{z_2} z_2 =\omega^k \vert z_2 \vert ^2.$$
As $z_2 \neq 0$, $\omega^k = -\frac{p}{3} \frac{1}{\vert z_2 \vert ^2} \in \mathbb{R}$, which implies $k=0$, therefore $z_2 = \overline{z_1}$.
\end{proof}
\paragraph{Ex. 1.3.7}
{\it Example 1.3.2 expressed the root $y=4$ of $y^3-15y-4$ in terms of Cardan's formulas. Find the other two roots, and eplain how Cardan's formulas give these roots.
}
\begin{proof} Since
\begin{align*}
y^3-15y-4 &= (y-4)(y^2+4y+1)\\
&=(y-4)[(y+2)^2-3]\\
&=(y-4)(y+2-\sqrt{3})(y+2+\sqrt{3}),
\end{align*}
the three roots of $y^3-15y-4$ are $4,-2+\sqrt{3},-2-\sqrt{3}$ and are all real.
The Cardan's formulas, with $q/2 = -2,p/3=-5 $, give
$$-\frac{q}{2}+ \sqrt{\left (\frac{q}{2}\right)^2+\left (\frac{p}{3}\right)^3} = 2 + \sqrt{4 - 125} = 2 + 11i.$$
Using the Bombelli's note :
$$(2+i)^3 = 2+11i,$$
so we can take for $z_1$ a cube root of $2+11i$ given by
$$z_1 = 2+i.$$
$z_2$ is the cube root of $-\frac{q}{2}- \sqrt{\left (\frac{q}{2}\right)^2+\left (\frac{p}{3}\right)^3}= 2 - i \sqrt{11}$ verifying $z_1 z_2 = -p/3 = 5$.
By Ex. 1.3.6, $$z_2 = \overline{z_1} = 2 -i.$$
The roots of $y^3-15y-4$, using Cardan's formulas, are
\begin{align*}
y_1 &= z_1+ z_2,\\
y_2 &= \omega z_1 + \omega^2 z_2 = 2\, \mathrm{Re}(\omega z_1),\\
y_3 &= \omega^2 z_1 + \omega z_2 = 2\, \mathrm{Re}(\omega^2 z_1),\\
\end{align*}
so
\begin{align*}
y_1 &= 2+i + 2 -i = 4,\\
y_2 &=\mathrm{Re}[(-1+i\sqrt{3})(2+i)] = -2 - \sqrt{3},\\
y_3 &= \mathrm{Re}[(-1-i\sqrt{3})(2+i)] = -2 + \sqrt{3}.\\
\end{align*}
\end{proof}
\paragraph{Ex. 1.3.8}
{\it Derive the trigonometric identity $\cos(3\theta) = 4 \cos^3 \theta - 3 \cos \theta$ using ${\cos(x+y)} = \cos x \cos y - \sin x \sin y$ and $\cos^2 \theta + \sin^2 \theta = 1$.
}
\begin{proof}
\begin{align*}
e^{i3\theta} &= \left(e^{i\theta}\right)^3\\
&=(\cos \theta + i \sin \theta)^3\\
&= \cos^3 \theta - 3\cos \theta \sin^2 \theta + i (...),
\end{align*}
so $\cos 3 \theta = \mathrm{Re}(e^{i3\theta}) = \cos^3 \theta - 3\cos \theta \sin^2 \theta = \cos^3 \theta - 3\cos\theta (1-\cos^2 \theta) $.
So
$$\cos 3 \theta = 4 \cos^3 \theta - 3 \cos \theta.$$
\end{proof}
\paragraph{Ex. 1.3.9}
{\it When divided by 4, $4t^3 - 3t - \cos(3\theta)$ gives $t^3 -\frac{3}{4} t - \frac{1}{4}\cos(3\theta)$, which is monic. Show that the discriminant of this polynomial is $\frac{27}{16} \sin^2(3\theta)$.
}
\begin{proof}
Let $g(t) = 4 t^3-3t -\cos(3\theta) = 4 f(t)$, where
$$f(t) = t^3 -\frac{3}{4}t - \frac{1}{4} \cos(3\theta).$$
The discriminant of $f$ is given by
\begin{align*}
\Delta &= -4 p^3 -27q^2\\
& = -4\left(-\frac{3}{4}\right)^3 - \frac{27}{16} \cos^2(3\theta)\\
&= \frac{27}{16}(1-\cos^2(3\theta))\\
&= \frac{27}{16} \sin^2(3 \theta).
\end{align*}
\end{proof}
\paragraph{Ex. 1.3.10}
{\it
The goal of this exercise is to prove Theorem 1.3.3. Let $y^3+py+q=0$ be a cubic equation with positive discriminant. Consider the substitution $y = \lambda t$, which transforms the given equation into $\lambda^3 t^3 +\lambda pt+q = 0$.
\begin{enumerate}
\item[(a)] Show that Exercises 2 and 3 imply that $p<0$.
\item[(b)] The equation $\lambda^3 t^3 + \lambda pt + q = 0$ can be written as
$$4t^3 - \left(\frac{-4p}{\lambda^2}\right) t - \left(\frac{-4q}{\lambda^3}\right) = 0.$$
Show that this coincides with $4t^3 - 3t -\cos(3\theta) = 0$ if and only if
$$\lambda = 2 \sqrt{\frac{-p}{3}}\quad \mathrm{and}\quad \cos(3\theta) = \frac{3\sqrt{3}q}{2p\sqrt{-p}}.$$
Note that $\sqrt{-p}$ is real and nonzero by part (a).
\item[(c)] Use $\Delta = -(4p^3+27q^3) >0$ to prove that
$$\left | \frac{3\sqrt{3}q}{2p\sqrt{-p}} \right | < 1.$$
\item[(d)] Explain how part (c) implies that the second equation of part (b) can be solved for $\theta$. Also show that $\theta>0$ implies that $\cos(3\theta) \neq \pm 1$.
\item[(e)] By (1.25), $t_1 = \cos \theta, t_2 = \cos\left(\theta + \frac{2\pi}{3}\right)$, and $t_3 = \cos\left(\theta + \frac{4\pi}{3}\right)$ are the three roots of $\lambda^3 t^3 + \lambda pt + q = 0$. Then show that the theorem follows by transforming this back to $y=\lambda t$ via part (b).
\end{enumerate}}
\begin{proof}
The discriminant of $f(y) = y^3+py+q$ is positive by hypothesis :
$$\Delta = -4p^3-27q^2>0.$$
Consequently, $f$ has three distinct real roots.
\begin{enumerate}
\item[(a)]
If $p\geq 0$, then $\Delta =-4p^3-27q^2\leq 0$, which is false by hypothesis, so
$$p<0.$$
\item[(b)]
$g(t) = f(\lambda t) = \lambda^3t^3+\lambda pt + q, \quad \lambda \neq 0$.
$g(t) = 0 \iff t^3 + \frac{p}{\lambda^2} t + \frac{q}{\lambda^3}=0 \iff 4t^3 -\left(-\frac{4p}{\lambda^2}\right) t - \left(-\frac{4q}{\lambda^3}\right)=0$.
Let $$h(t) = \frac{4}{\lambda^3} f(\lambda t) = 4t^3 -\left(-\frac{4p}{\lambda^2}\right) t - \left(-\frac{4q}{\lambda^3}\right)$$
Then $h(t)$ has the same roots as $g(t) = f(\lambda t)$. Moreover
$$-\frac{4p}{\lambda^2} = 3 \iff \lambda^2 = -\frac{4}{3} p.$$
If we take $\lambda = 2\sqrt{\frac{-p}{3}}$, then $-\frac{4q}{\lambda^3} = \frac{-4q}{-\frac{8p}{3}\sqrt{-\frac{p}{3}}} = \frac{3\sqrt{3}q}{2p\sqrt{-p}}$, and
$$h(t) = 4t^3 -3t-\frac{3\sqrt{3}q}{2p\sqrt{-p}}.$$
So $h(t) = 4t^3 -3t - \cos(3\theta)$ if and only if
$$\lambda = 2 \sqrt{\frac{-p}{3}}\quad \mathrm{and}\quad \cos(3\theta) = \frac{3\sqrt{3}q}{2p\sqrt{-p}}.$$
\item[(c)] Since $p<0$,
\begin{align*}
\left \vert \frac{3\sqrt{3}q}{2p\sqrt{-p}} \right \vert <1 &\iff -\frac{27}{4} \frac{q^2}{p^3} < 1\\
&\iff -27q^2 > 4p^3 \\
&\iff \Delta = -4p^3-27q^2>0.
\end{align*}
\item[(d)]
As $\Delta > 0$ by hypothesis, $ \left \vert \frac{3\sqrt{3}q}{2p\sqrt{-p}} \right \vert <1$ : so there exists $\beta \in ]0,\pi[$ such that $ \frac{3\sqrt{3}q}{2p\sqrt{-p}} = \cos \beta$.
Let $\theta = \beta/3$, then $\theta \in ]0,\pi/3[$ and
$$h(t) = 4t^3 - 3t -\cos(3\theta), $$
where
$$\theta = \frac{1}{3}\arccos\left(\frac{3\sqrt{3}q}{2p\sqrt{-p}} \right).$$
Since $3 \theta \in ]0,\pi[, \cos(3\theta) \neq\pm1$.
\item[(e)] We will solve the equation $h(t) = 4t^3 - 3t -\cos(3\theta)=0$.
Let $u(t) = 4t^3-3t$, where $t \in \R$.
$$u'(t) <0 \iff 12t^2-3 = 3(4t^2-1)<0 \iff -\frac{1}{2} \leq t < \frac{1}{2} : $$
$u$ is decreasing on $[-1/2,1/2]$, increasing on $]-\infty,-\frac{1}{2}]$ and on $[\frac{1}{2},+\infty[$.
$u(-1/2) = 1,u(0) = 0, u(1/2)=-1,u(1)=1,u(-1) = -1$. Thus $|t|>1 \Rightarrow |u(t)|>1$ and so
$$\forall t \in \R,\quad u(t) \in [-1,1] \Rightarrow t \in [-1,1].$$
Let $t$ a root of $h(t)$, then $u(t) = 4t^3 - 3 t = \cos(3\theta) \in [-1,1]$. By the properties of the function $u$ on $[-1,1]$, $t \in [-1,1]$, so there exists $\alpha \in \mathbb{R}$ such that $\cos(\alpha) = t$.
\begin{align*}
h(t) = 0 &\iff 4 t^3 - 3t = \cos(3\theta)\\
&\iff 4 \cos^3(\alpha) - 3 \cos(\alpha) = \cos(3\theta)\\
&\iff \cos(3\alpha) = \cos(3\theta)\\
&\iff 3 \alpha = 3 \theta + 2k \pi \ \mathrm{or} \ 3 \alpha =- 3 \theta + 2k \pi, \quad k\in \mathbb{Z}\\
&\iff \alpha = \pm\theta + k \frac{2\pi}{3}, \quad k \in \Z\\
&\iff t = \cos\left (\theta + k \frac{2\pi}{3}\right),\quad k = 0,1,2.\\
\end{align*}
Therefore the polynomial $$h(t) = 4t^3 - 3t -\cos(3\theta)$$ has three roots : $\cos(\theta), \cos(\theta+ \frac{2\pi}{3}),\cos(\theta+ \frac{4\pi}{3})$. These roots are real, and distinct, since $\Delta>0$.
As $h(t) = \frac{4}{\lambda^3} f(\lambda t) $, $f(t)=0 \iff h(t/\lambda)=0$.
The roots of $f$ are so $\lambda \cos(\theta), \lambda \cos(\theta+ \frac{2\pi}{3}),\lambda \cos(\theta+ \frac{4\pi}{3})$, where $ \lambda = 2\sqrt{\frac{-p}{3}}$.
The Theorem 1.3.3 is proven:
{\it Let $y^3+py+q$ be a polynomial with real coefficients and positive discriminant. Then $p<0$, and the root of the equation are
$$y_1 = 2\sqrt{\frac{-p}{3}} \cos(\theta),2\sqrt{\frac{-p}{3}} \cos\left(\theta+\frac{2\pi}{3}\right),2\sqrt{\frac{-p}{3}} \cos\left(\theta+\frac{4\pi}{3}\right),$$
where $$ \theta = \frac{1}{3}\arccos\left(\frac{3\sqrt{3}q}{2p\sqrt{-p}} \right).$$
}
\end{enumerate}
\end{proof}
\paragraph{Ex. 1.3.11}
{\it Consider the equation $4t^3 - 3t - \cos(3\theta) = 0$, where $\cos(3\theta) \neq \pm 1$. In (1.25), we expresses the roots in terms of trigonometric functions. In this exercise, you will study what happens when we use Cardan's formulas.
\begin{enumerate}
\item[(a)] Show that Cardan's formulas give the root
$$t_1 = \frac{1}{2} \sqrt[3]{\cos(3\theta) + i \sin(3\theta)} + \frac{1}{2} \sqrt[3]{\cos(3\theta) - i \sin(3\theta)}.$$
\item[(b)] Explain why $\frac{1}{2} e^{i\theta} = \frac{1}{2} (\cos \theta + i \sin \theta)$ is a value of $\frac{1}{2} \sqrt[3]{\cos(3\theta) + i \sin(3\theta)}$, and use to show that $t_1$ is just $\cos \theta$.
\item[(c)] Similarly, show that Cardan's formulas also give the roots $t_2$ and $t_3$ as predicted by (1.25).
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)] We apply the Cardan's formulas to $4 t^3 - 3 t -\cos(3\theta) = 0$, which is equivalent to
$$t^3 - \frac{3}{4} t -\frac{1}{4}\cos(3\theta) = 0.$$
$\frac{p}{3} = -\frac{1}{4}, \frac{q}{2} = -\frac{1}{8} \cos(3\theta)$, thus
$\left( \frac{q}{2}\right)^2 + \left ( \frac{p}{3} \right)^3 = \frac{1}{64} (\cos^2(3\theta) - 1) =\left( \frac{i \sin(3\theta)}{8} \right)^2 $
We choose $\sqrt{\left( \frac{q}{2}\right)^2 + \left ( \frac{p}{3} \right)^3} = \frac{i \sin(3\theta)}{8}$,
then $-\frac{q}{2}+\sqrt{\left( \frac{q}{2}\right)^2 + \left ( \frac{p}{3} \right)^3} = \frac{1}{8}( \cos(3\theta) + i \sin(3 \theta)) = \left (\frac{1}{2} e^{i \theta} \right )^3$.
\item[(b,c)]
We choose the cube root $z_1 = \frac{1}{2} e^{i \theta}$.
Then $z_2 = \overline{z_1}$.
As $\omega = e^{i 2 \pi/3} = e^{-i4\pi/3}$, the three real roots are given by
\begin{align*}
t_1 &= z_1 + \overline{z_1} = \frac{1}{2} (e^{i \theta} + e^{-i\theta}) = \cos (\theta),\\
t_2&= e^{i 2 \pi/3} z_1 + e^{-i2\pi/3} \overline{z_1}=\frac{1}{2} (e^{i (\theta + 2\pi/3)} + e^{-i(\theta+ 2\pi/3)}) = \cos\left(\theta + \frac{2\pi}{3}\right),\\
t_3&= e^{i 4 \pi/3} z_1 + e^{-i4\pi/3} \overline{z_1}=\frac{1}{2} (e^{i (\theta + 4\pi/3)} + e^{-i(\theta+ 4\pi/3)}) = \cos\left(\theta + \frac{4\pi}{3}\right).\\
\end{align*}
\end{enumerate}
\end{proof}
\paragraph{Ex. 1.3.12}
{\it Example 1.3.2 discusses Bombelli's discovery that $\sqrt[3]{2+11i} = 2+i$. But not all cube roots can be expressed so simply. This exercise will show that $\sqrt[3]{4+\sqrt{11}i}$ is not of the form $a+b\sqrt{11}i$ for $a,b \in \Z$.
\begin{enumerate}
\item[(a)] Suppose that $4 + \sqrt{11}i = (a+ b \sqrt{11}i)^3$ for some $a,b\in \Z$. Show that this implies that $4 = a^3 - 33 ab^2$ and $1 = 3a^2b - 11 b^3$.
\item[(b)] Show that the equations of part (a) imply that $b=\pm1$ and $a\mid 4$. Conclude that the equation $4 + \sqrt{11}i = (a+b \sqrt{11}i)^3$ has no solutions with $a,b\in \Z$.
\item[(c)] Find a cubic polynomial of the form $x^3+px+q$ with $p,q\in \Z$ which has the number $\sqrt[3]{4+\sqrt{11}i} + \sqrt[3]{4-\sqrt{11}i}$ as a root.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)] Let $a,b\in \mathbb{Z}$ :
\begin{align*}
(a+ib\sqrt{11})^3 &= a^3 + 3ia^2 b \sqrt{11} - 3 \times11a b^2 - i b^3 11\sqrt{11}\\
&=(a^3-33ab^2)+i\sqrt{11}(3a^2b-11b^3),
\end{align*}
so
$$4+i\sqrt{11} =(a+ib\sqrt{11})^3 \iff
\left \{
\begin{array}{ccc}
4&= & a^3-33ab^2,\\
1& = & 3a^2b - 11b^3.
\end{array}
\right.
$$
\item[(b)]
The first equation show that $a \mid 4$, and the second that $b\mid 1$, thus $b = \pm1$.
As $b^3=b=\pm1$, the second equation gives $3a^2-11 = \pm1$, thus $3a^2 = 10$ or $3a^2 = 12$. $3a^2 = 10$ is impossible since $3 \nmid 10$. $3a^2 = 12$ gives $a = \pm 2$. But then $4 = a^3 -33 a b^2 = a(a^2-33) = \pm 2 \times 29$, which is false.
The equation $4+i\sqrt{11} =(a+ib\sqrt{11})^3$ has no solution.
\item[(c)]
We must find $p,q$ such that
$-\frac{q}{2} = 4,\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3 = -11$.
$q=-8, p = -9$ is a solution.
An equation with solution $\sqrt[3]{4+\sqrt{11}i} + \sqrt[3]{4-\sqrt{11}i}$ is so
$$y^3 -9y-8 = 0.$$
\end{enumerate}
\end{proof}
\paragraph{Ex. 1.3.13}
{\it Suppose that a quartic polynomial $f = x^4+bx^3+cx^2+dx+e$ in $\R[x]$ has distinct roots $x_1,x_2,x_3,x_4 \in \C$. The discriminant of $f$ is defined by the equation
$$\Delta = (x_1-x_2)^2(x_1-x_3)^2(x_1-x_4)^2(x_2-x_3)^2(x_2-x_4)^2(x_3-x_4)^2.$$
The theory developed in Chapter 2 will imply that $\Delta \in \R$, and $\Delta \neq 0$, since the $x_i$ are distinct. Adapt the proof of Theorem 1.3.1 to show that
$\Delta<0 \iff x^4+bx^3+cx^2+dx+e = 0$ has exactly two real roots.
}
\begin{proof}
Suppose that $f$ has exactly 2 real roots $x_1,x_2$. Then the two others form a complex conjugate pair : $x_3 = a+bi, x_4 = a-bi, \ b\neq 0$.
Then
\begin{align*}
\Delta &= (x_1-x_2)^2 (x_1-x_3)^2 (x_1 - x_4)^2 (x_2-x_3)^2 (x_2-x_4)^2 (x_3-x_4)^2\\
&=(x_1-x_2)^2(x_1-a-bi)^2(x_1-a+bi)^2(x_2-a-bi)^2(x_2-a+bi)^2(2bi)^2\\
&=-4b^2(x_1-x_2)^2\vert x_1-a-bi\vert^4 \vert x_2 -a -bi \vert^4 <0.
\end{align*}
The only other possible cases are the case where the 4 roots are real, and then $\Delta >0$, and the case where the 4 roots are non real, forming two complex conjugate pairs.
$x_1 = a+ib, x_2 = a-ib, x_3= c+id, x_4 = c-id,\ a,b,c,d\in \mathbb{R}$.
Then
\begin{align*}
\Delta &= (x_1-x_2)^2 (x_1-x_3)^2 (x_1 - x_4)^2 (x_2-x_3)^2 (x_2-x_4)^2 (x_3-x_4)^2\\
&=(x_1-x_2)^2 (x_3-x_4)^2(x_1-x_3)^2(\overline{x_1-x_3})^2 (x_1-x_4)^2(\overline{x_1-x_4})^2\\
&=(2ib)^2(2id)^2 \vert x_1-x_3 \vert^4\vert x_1-x_4 \vert^4\\
&=16b^2d^2 \vert x_1-x_3 \vert^4\vert x_1-x_4 \vert^4 >0.\\
\end{align*}
Conclusion : $\Delta<0$ if and only if $f$ has exactly two real roots.
\end{proof}
\paragraph{Ex. 1.3.14}
{\it In Section 1.1, we discussed the equation $x^3+2x^2+10x = 20$ considered by Fibonacci.
\begin{enumerate}
\item[(a)] Show that this equation has precisely one real root. This is the root Fibonacci approximated so well.
\item[(b)] Use Cardan's formulas and a calculator to work out numerically the three roots of this polynomial.
\end{enumerate}
}
\begin{proof}
\begin{enumerate}
\item[(a)]
Let $f (x) = x^3+2x^2+10x$.
For all $x\in \mathbb{R}$, $f'(x) = 3 x^2+4x+10 = 2x^2 +(x+2)^2 + 6 >0$, thus $f$ is strictly increasing, $f$ is continuous, and $\lim\limits_{y\to +\infty} f(y) = +\infty$, $\lim\limits_{y\to -\infty} f(y) = -\infty$. By the intermediate values theorem, $f : \mathbb{R} \to \mathbb{R}$ is a bijection. Therefore there exists $x\in \R$ such that $f(x) = 20$, so there exists a unique real root of $$g(x) = x^3+2x^2+10x - 20.$$
As $g(0) = -20$ and $\lim\limits_{x\to +\infty} g(x) = +\infty$, this root is positive.
\item[(b)] To remove the coefficient of $x^2$, let $h(y) = g\left(y-\frac{2}{3}\right)$.
\begin{align*}
h(y) &= g\left(y-\frac{2}{3}\right)\\
&=\left(y-\frac{2}{3}\right)^3 + 2\left(y-\frac{2}{3}\right)^2 + 10\left(y-\frac{2}{3}\right)-20\\
&=y^3-2y^2+\frac{4}{3}y-\frac{8}{27} +2y^2-\frac{8}{3}y+\frac{8}{9}+10y -\frac{20}{3}-20\\
&=y^3+\frac{26}{3} y - \frac{704}{27}.\\
\end{align*}
Define $p,q$ by
$$\frac{p}{3} = \frac{26}{9}, \frac{q}{2} = - \frac{352}{27}$$
\begin{align*}
\left(\frac{q}{2}\right)^2+ \left(\frac{p}{3}\right)^3 &= \frac{123904}{3^6}+\frac{17576}{3^6}\\
&=\frac{141480}{3^6}\\
&=\frac{5240}{27}
\end{align*}
Consequently, the real solution of the equation is given by
\begin{align*}
x_1 &= -\frac{2}{3} + \sqrt[3]{\frac{352}{27} + \sqrt{\frac{5240}{27}}}+ \sqrt[3]{\frac{352}{27} - \sqrt{\frac{5240}{27}}}\\
&=\frac{1}{3} \left( -2+\sqrt[3]{352 + 6\sqrt{3930}} +\sqrt[3]{352 - 6\sqrt{3930}}\right)\\
&=\frac{1}{3}\left(-2+\sqrt[3]{6\sqrt{3930}+352}-\sqrt[3]{6\sqrt{3930}-352}\right).\\
\end{align*}
\end{enumerate}
With a calculator, an approximation at $10^{-10}$ of the real root $x_1$ is $x_1 \simeq 1.3688081078$.
The two other roots are given by