-
Notifications
You must be signed in to change notification settings - Fork 0
/
hot_plasma_all_orders.m
448 lines (351 loc) · 13.1 KB
/
hot_plasma_all_orders.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (C) 2019-2020 Eindhoven University of Technology. %
% %
% This code is free software, you can redistribute it and/or modify it %
% under the terms of the GNU General Public License; either version 3.0 %
% of the License, or (at your option) any later version. See LICENSE.md %
% for details, or see <https://www.gnu.org/licenses/> %
% %
% This code is distributed in the hope that it will be useful, but %
% WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. %
% %
% Author: Rick Budé ([email protected]) %
% %
% Contact: Rick Budé ([email protected]) %
% Jan van Dijk ([email protected]) %
% Roger Jaspers ([email protected]) %
% Bart Smolders ([email protected]) %
% Dirk Van Eester ([email protected]) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
addpath('plasma_property_functions'); % load functions that contain plasma properties (cyclotron frequency etc)
addpath('hot_plasma_functions'); % load functions specifically for hot plasma (cp Stix tensor, etc)
addpath('cold_plasma_functions'); % load functions specifically for cold plasma (cp Stix tensor, etc)
addpath('EM_property_functions'); % load functions for EM properties (Poynting vector etc)
addpath('profile_functions'); % load functions for generating profiles
addpath('simulator_functions'); % load functions that support running simulations (general)
addpath('plasma_profiles'); % load parameter files
clearvars;
close all;
profile on;
%load physical constants
constants;
tic;
%load "input_file.mat", which contains the name of the profile that should
%be loaded. If this file does not exist, or if you want to select a
%different input file, run "load_input".
load('input_file');
%these should be moved to input files as well.
calc_power = 1;
compare_with_results_Dirk = 0;
compare_with_previous = 0;
compare_with_all_orders = 0;
%Bb: background magnetic field
[profiles,flags,settings] = load_profile(input_file);
Bb = profiles.Bb;
k = profiles.k;
m = profiles.m;
n = profiles.n;
q = profiles.q;
T = profiles.T;
Jant = profiles.Jant;
r = profiles.r;
omega = settings.omega;
curve_k_parr = flags.curve_k_parr;
run(input_file);
[r_high_res,E,E_high_res] = hp_calc_E_all_orders(profiles,flags,settings);
t_elapsed = toc;
fprintf('Done calculating fields (%.2f s), generating plots...\n',t_elapsed);
%J_p_2 = hp_plasma_current_modified(E,profiles,flags,settings);
if(calc_power)
P_abs = zeros(N,n_species+1);
w = waitbar(0,sprintf('Calculating plasma current, species %i/%i',0,n_species+1));
tprev = toc;
for species = 1:n_species+1
J_p = hp_plasma_current_fast(r,E,k,curve_k_parr,omega,Bb,m(:,species),n(:,species),q(:,species),T(:,species),Jant);
P_abs(:,species) = power_absorbed(J_p,E);
waitbar(species/(n_species+1),w,sprintf('Calculating plasma current, species %i/%i',species,n_species+1));
end
close(w);
figure(88)
plot(r-r0,sum(P_abs,2)),hold on;
plot(r-r0,P_abs),hold on;
xlabel('r');
ylabel('P_{abs}');
%legend('total','e','H','D');
legend('total','e','He3','D','T','He4t','He4h','Be');
figure(89)
plot(r-r0,cumsum(sum(P_abs,2))),hold on;
plot(r-r0,cumsum(P_abs));
xlabel('r');
ylabel('int P_{abs}');
%legend('total','e','H','D');
legend('total','e','He3','D','T','He4t','He4h','Be');
end
figure(20)
N_fft = 2^(nextpow2(N)+3);
Fs = N_fft/abs(max(r)-min(r))/(2*pi); %samples per meter
spectrum = abs(fftshift(fft(E,N_fft),1));
frequencies = linspace(-Fs/2,Fs/2,N_fft)';
plot(frequencies,10*log10(spectrum./max(spectrum))),hold on;
plot([min(frequencies) max(frequencies)],[-30 -30],'--');
xlim([-2000 2000]);
ylim([-40 0]);
legend('E_x','E_y','E_z');
xlabel('k_x');
ylabel('log_{10}|E|');
title('spectrum of electric field components');
figure(21)
plot(frequencies,spectrum),hold on;
xlim([-2000 2000]);
legend('E_x','E_y','E_z');
xlabel('k_x');
ylabel('|E|');
title('spectrum of electric field components');
B = magnetic_field_1_5D(r,k,omega,E);
if(compare_with_results_Dirk)
load('results_dirk');
end
if(compare_with_previous && ~compare_with_all_orders)
load('previous_results');
end
if(compare_with_all_orders)
%load('previous_results_all_orders_ITER_highres');
load('previous_results_truncated_taylor');
%load('previous_results_all_orders_ITER');
%load('previous_results_all_orders_no_Be_He4t');
%interpolate previous results on current resolution
E_interp = interp1(r_prev,E_prev,r,'spline');
error = E-E_interp;
end
%normalize Poyting flux, such that maximum = 1
if(iunityflux)
[E,B] = normalize_flux(r,E,B);
end
Flux = Poynting_flux(r,E,B,curve_k_parr);
figure(1);
subplot(3,1,1);
plot(r,Bb);
xlabel('x [m]');
ylabel('B [T]');
title('Background magnetic field');
legend('B_x','B_y','B_z');
subplot(3,1,2);
plot(r,n),hold on;
xlabel('x [m]');
ylabel('n [m^{-3}]');
title('Density');
legend('n_e','n_H','n_D');
subplot(3,1,3);
plot(r,T*kB/e),hold on;
xlabel('x [m]');
ylabel('T [eV]');
title('Temperature');
legend('T_e','T_H','T_D');
figure(9)
mD = m(:,3);
ne = n(:,1);
omega_UH = UH_frequency(Bb,ne);
omega_LH = LH_frequency(Bb,ne,mD);
omega_Xmin = Xmin_frequency (Bb,ne,mD);
omega_Xplus = Xplus_frequency(Bb,ne,mD);
omega_c = cyclotron_frequency(q,Bb,m);
plot(r,log10(abs(omega*ones(N,1)))),hold on;
plot(r,log10(omega_LH));
plot(r,log10(omega_UH));
plot(r,log10(omega_Xmin));
plot(r,log10(omega_Xplus));
plot(r,log10(real(omega_c)));
title('Characteristic plasma frequencies');
xlabel('x [m]');
ylabel('\omega');
legend('\omega','\omega_{LH}','\omega_{UH}','\omega_{X_-}','\omega_{X_+}','\Omega_{ce}','\Omega_{cH}','\Omega_{cD}');
figure(10)
k_parr = k(:,3); %k_parr = kz
k_perp = cp_wavenumber_k_parr(omega,k_parr,Bb,m,n,q);
subplot(2,2,1);
plot(r,real(k_perp(:,1).^2)),hold on;
title('wavenumber');
xlabel('x [m]');
ylabel('Re(k_x^2)');
legend('FW')
subplot(2,2,2);
plot(r,imag(k_perp(:,1).^2)),hold on;
title('wavenumber');
xlabel('x [m]');
ylabel('k');
ylabel('Im(k_x^2)');
legend('FW')
subplot(2,2,3);
plot(r,real(k_perp(:,2).^2)),hold on;
title('wavenumber');
xlabel('x [m]');
ylabel('k');
ylabel('Re(k_x^2)');
legend('SW')
subplot(2,2,4);
plot(r,imag(k_perp(:,2).^2)),hold on;
title('wavenumber');
xlabel('x [m]');
ylabel('k');
ylabel('Im(k_x^2)');
legend('SW')
colors = get(gca,'colororder');
figure(2);
%subplot(2,1,1);
plot_components_and_abs(r-r0,real(E.*[1 1 100]),'-',colors);
if(compare_with_results_Dirk)
plot_components_and_abs(r_Dirk-r0,real(E_Dirk).*[1 1 100],'--',colors);
end
if(compare_with_previous)
plot_components_and_abs(r-r0,real(E_interp).*[1 1 100],'--',colors);
end
%xlim([-a 0.8]);
plot_vertical_lines(ap,x_wall)
h = flipud(findobj(gca,'Type','line'));
legend([h(1) h(2) h(3) h(4) h(6)],{'Re\{Ex\}','Re\{Ey\}','Re\{100*Ez\}','a_p','a'});
xlim([-x_wall x_wall])
xlabel('x [m]');
ylabel('E [V/m]')
%ylim([-20 20]);
%title(sprintf('D plasma, H minority, x_a = %.2f, f = %.1fMHz, \\nu_\\omega =%.1g , n_D = %.0gm^{-3}, n_i = %.0gm^{-3}, B_0=%.2fT, k_z = %.1f',r0+x_a,f/1e6,nuom,n0,n0*conc_ion(1),B0,ntor/r0));
title('Real part of Electic field components for JET-parameters')
%
% subplot(2,1,2);
% plot_components_and_abs(r-r0,imag(E.*[1 1 100]),'-',colors);
% if(compare_with_results_Dirk)
% plot_components_and_abs(r_Dirk-r0,imag(E_Dirk).*[1 1 100],'--',colors);
% end
%
% if(compare_with_previous)
% plot_components_and_abs(r_prev-r0,imag(E_prev).*[1 1 100],'--',colors);
% end
% %xlim([-a 0.8]);
% legend('Im\{Ex\}','Im\{Ey\}','Im\{100*Ez\}');
% plot_vertical_lines(ap,x_wall)
% xlabel('x [m]');
% ylabel('E [V/m]')
% %ylim([-20 20]);
% title(sprintf('D plasma, H minority, x_a = %.2f, f = %.1fMHz, \\nu_\\omega =%.1g , n_D = %.0gm^{-3}, n_i = %.0gm^{-3}, B_0=%.2fT, k_z = %.1f',r0+x_a,f/1e6,nuom,n0,n0*conc_ion(1),B0,ntor/r0));
if(compare_with_previous)
figure(5);
subplot(1,3,1);
plot(r,abs(E(:,1))),hold on;
plot(r,abs(E_interp(:,1))),hold on;
xlim(r0+[-x_wall x_wall]);
xlim([-ap ap])
xlabel('r[m]');
ylabel('|E_x|');
legend('modified linearized','all-orders');
title('|E_x|, JET parameters');
subplot(1,3,2);
plot(r,abs(E(:,2))),hold on;
plot(r,abs(E_interp(:,2))),hold on;
xlim(r0+[-x_wall x_wall]);
xlim([-ap ap])
xlabel('r[m]');
ylabel('|E_y|');
legend('modified linearized','all-orders');
title('|E_y|, JET parameters');
subplot(1,3,3);
plot(r,abs(E(:,3))),hold on;
plot(r,abs(E_interp(:,3))),hold on;
xlim(r0+[-x_wall x_wall]);
xlim([-ap ap])
xlabel('r[m]');
ylabel('|E_z|');
legend('modified linearized','all-orders');
title('|E_z|, JET parameters');
end
figure(31)
subplot(3,1,1);
plot(r-r0,real(E(:,1))),hold on;
plot(r-r0,imag(E(:,1))),hold on;
xlabel('x[m]');
ylabel('E_x');
legend('real(E_x)','imag(E_x)');
subplot(3,1,2);
plot(r-r0,real(E(:,2))),hold on;
plot(r-r0,imag(E(:,2))),hold on;
xlabel('x[m]');
ylabel('E_y');
legend('real(E_y)','imag(E_y)');
subplot(3,1,3);
plot(r-r0,real(E(:,3))),hold on;
plot(r-r0,imag(E(:,3))),hold on;
xlabel('x[m]');
ylabel('E_z');
legend('real(E_z)','imag(E_z)');
% figure(21)
% subplot(2,1,1)
% mask = [1 1 100];
% for dim = 1:3
% plot(r-r0,abs(E(:,dim))*mask(dim),'Color',colors(dim,:)),hold on;
% end
% title(sprintf('D plasma, H minority, x_a = %.2f, f = %.1fMHz, \\nu_\\omega =%.1g , n_D = %.0gm^{-3}, n_i = %.0gm^{-3}, B_0=%.2fT, k_z = %.1f',r0+x_a,f/1e6,nuom,n0,n0*conc_ion(1),B0,ntor/r0));
%
%
% subplot(2,1,2)
% mask = [1 1 1];
% for dim = 1:3
% plot(r-r0,angle(E(:,dim))*mask(dim),'Color',colors(dim,:)),hold on;
% end
% title(sprintf('D plasma, H minority, x_a = %.2f, f = %.1fMHz, \\nu_\\omega =%.1g , n_D = %.0gm^{-3}, n_i = %.0gm^{-3}, B_0=%.2fT, k_z = %.1f',r0+x_a,f/1e6,nuom,n0,n0*conc_ion(1),B0,ntor/r0));
figure(3);
subplot(2,1,1);
plot_components_and_abs(r,real(omega)*real(B),'-',colors);
if(compare_with_results_Dirk)
plot_components_and_abs(r_Dirk,real(omega)*real(B_Dirk),'--',colors);
end
if(compare_with_previous)
plot_components_and_abs(r_prev,real(omega)*real(B_prev),'--',colors);
end
legend('Re\{\omega Bx\}','Re\{\omega By\}','Re\{\omega Bz\}');
xlabel('x [m]');
ylabel('B [A/m]')
%ylim([-20 20]);
title(sprintf('D plasma, H minority, x_a = %.2f, f = %.1fMHz, \\nu_\\omega =%.1g , n_D = %.0gm^{-3}, n_i = %.0gm^{-3}, B_0=%.2fT, k_z = %.1f',r0+x_ant,f/1e6,nuom,n0,n0*conc_ion(1),B0,ntor/r0));
subplot(2,1,2);
plot_components_and_abs(r,real(omega)*imag(B),'-',colors);
if(compare_with_results_Dirk)
plot_components_and_abs(r_Dirk,real(omega)*imag(B_Dirk),'--',colors);
end
if(compare_with_previous)
plot_components_and_abs(r_prev,real(omega)*imag(B_prev),'--',colors);
end
legend('Im\{\omega Bx\}','Im\{\omega By\}','Im\{\omega Bz\}');
xlabel('x [m]');
ylabel('B [A/m]')
%ylim([-20 20]);
title(sprintf('D plasma, H minority, x_a = %.2f, f = %.1fMHz, \\nu_\\omega =%.1g , n_D = %.0gm^{-3}, n_i = %.0gm^{-3}, B_0=%.2fT, k_z = %.1f',r0+x_ant,f/1e6,nuom,n0,n0*conc_ion(1),B0,ntor/r0));
figure(4)
subplot(2,1,1);
plot(r,real(Flux(:,1)));
xlabel('r [m]');
ylabel('S_p [W/m]');
title('Real Poyinting flux in -x direction');
subplot(2,1,2);
plot(r,imag(Flux(:,1)));
xlabel('r [m]');
ylabel('S_p [W/m]');
title('Imagionary Poyinting flux in -x direction');
%%%%%%%%%%%%%%%%%%%%%%%%%%% calculate error %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if(compare_with_all_orders)
mask_zero = abs((r-r0))>=ap;
P_E_interp = sum(abs(E_interp(~mask_zero,:)).^2);
P_E = sum(abs(E (~mask_zero,:)).^2);
P_error = sum(abs(error (~mask_zero,:)).^2);
total_error = RRSE(E_interp(~mask_zero,:),E(~mask_zero,:));
fprintf('total error:');
disp(total_error)
figure(140)
plot(r-r0,abs(error)),hold on;
plot_vertical_lines(ap,x_wall);
legend('Error |Ex|','Error |Ey|','Error |Ez|');
title('normalized error');
profile off;
end
E_prev = E;
B_prev = B;
r_prev = r;
save('previous_results','r_prev','E_prev','B_prev');