forked from ambakick/Person-Detection-and-Tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluator.py
278 lines (245 loc) · 11.7 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Detection model evaluator.
This file provides a generic evaluation method that can be used to evaluate a
DetectionModel.
"""
import logging
import tensorflow as tf
from object_detection import eval_util
from object_detection.core import prefetcher
from object_detection.core import standard_fields as fields
from object_detection.metrics import coco_evaluation
from object_detection.utils import object_detection_evaluation
# A dictionary of metric names to classes that implement the metric. The classes
# in the dictionary must implement
# utils.object_detection_evaluation.DetectionEvaluator interface.
EVAL_METRICS_CLASS_DICT = {
'pascal_voc_detection_metrics':
object_detection_evaluation.PascalDetectionEvaluator,
'weighted_pascal_voc_detection_metrics':
object_detection_evaluation.WeightedPascalDetectionEvaluator,
'pascal_voc_instance_segmentation_metrics':
object_detection_evaluation.PascalInstanceSegmentationEvaluator,
'weighted_pascal_voc_instance_segmentation_metrics':
object_detection_evaluation.WeightedPascalInstanceSegmentationEvaluator,
'open_images_V2_detection_metrics':
object_detection_evaluation.OpenImagesDetectionEvaluator,
'coco_detection_metrics':
coco_evaluation.CocoDetectionEvaluator,
'coco_mask_metrics':
coco_evaluation.CocoMaskEvaluator,
'oid_challenge_object_detection_metrics':
object_detection_evaluation.OpenImagesDetectionChallengeEvaluator,
}
EVAL_DEFAULT_METRIC = 'pascal_voc_detection_metrics'
def _extract_predictions_and_losses(model,
create_input_dict_fn,
ignore_groundtruth=False):
"""Constructs tensorflow detection graph and returns output tensors.
Args:
model: model to perform predictions with.
create_input_dict_fn: function to create input tensor dictionaries.
ignore_groundtruth: whether groundtruth should be ignored.
Returns:
prediction_groundtruth_dict: A dictionary with postprocessed tensors (keyed
by standard_fields.DetectionResultsFields) and optional groundtruth
tensors (keyed by standard_fields.InputDataFields).
losses_dict: A dictionary containing detection losses. This is empty when
ignore_groundtruth is true.
"""
input_dict = create_input_dict_fn()
prefetch_queue = prefetcher.prefetch(input_dict, capacity=500)
input_dict = prefetch_queue.dequeue()
original_image = tf.expand_dims(input_dict[fields.InputDataFields.image], 0)
preprocessed_image, true_image_shapes = model.preprocess(
tf.to_float(original_image))
prediction_dict = model.predict(preprocessed_image, true_image_shapes)
detections = model.postprocess(prediction_dict, true_image_shapes)
groundtruth = None
losses_dict = {}
if not ignore_groundtruth:
groundtruth = {
fields.InputDataFields.groundtruth_boxes:
input_dict[fields.InputDataFields.groundtruth_boxes],
fields.InputDataFields.groundtruth_classes:
input_dict[fields.InputDataFields.groundtruth_classes],
fields.InputDataFields.groundtruth_area:
input_dict[fields.InputDataFields.groundtruth_area],
fields.InputDataFields.groundtruth_is_crowd:
input_dict[fields.InputDataFields.groundtruth_is_crowd],
fields.InputDataFields.groundtruth_difficult:
input_dict[fields.InputDataFields.groundtruth_difficult]
}
if fields.InputDataFields.groundtruth_group_of in input_dict:
groundtruth[fields.InputDataFields.groundtruth_group_of] = (
input_dict[fields.InputDataFields.groundtruth_group_of])
groundtruth_masks_list = None
if fields.DetectionResultFields.detection_masks in detections:
groundtruth[fields.InputDataFields.groundtruth_instance_masks] = (
input_dict[fields.InputDataFields.groundtruth_instance_masks])
groundtruth_masks_list = [
input_dict[fields.InputDataFields.groundtruth_instance_masks]]
groundtruth_keypoints_list = None
if fields.DetectionResultFields.detection_keypoints in detections:
groundtruth[fields.InputDataFields.groundtruth_keypoints] = (
input_dict[fields.InputDataFields.groundtruth_keypoints])
groundtruth_keypoints_list = [
input_dict[fields.InputDataFields.groundtruth_keypoints]]
label_id_offset = 1
model.provide_groundtruth(
[input_dict[fields.InputDataFields.groundtruth_boxes]],
[tf.one_hot(input_dict[fields.InputDataFields.groundtruth_classes]
- label_id_offset, depth=model.num_classes)],
groundtruth_masks_list, groundtruth_keypoints_list)
losses_dict.update(model.loss(prediction_dict, true_image_shapes))
result_dict = eval_util.result_dict_for_single_example(
original_image,
input_dict[fields.InputDataFields.source_id],
detections,
groundtruth,
class_agnostic=(
fields.DetectionResultFields.detection_classes not in detections),
scale_to_absolute=True)
return result_dict, losses_dict
def get_evaluators(eval_config, categories):
"""Returns the evaluator class according to eval_config, valid for categories.
Args:
eval_config: evaluation configurations.
categories: a list of categories to evaluate.
Returns:
An list of instances of DetectionEvaluator.
Raises:
ValueError: if metric is not in the metric class dictionary.
"""
eval_metric_fn_keys = eval_config.metrics_set
if not eval_metric_fn_keys:
eval_metric_fn_keys = [EVAL_DEFAULT_METRIC]
evaluators_list = []
for eval_metric_fn_key in eval_metric_fn_keys:
if eval_metric_fn_key not in EVAL_METRICS_CLASS_DICT:
raise ValueError('Metric not found: {}'.format(eval_metric_fn_key))
evaluators_list.append(
EVAL_METRICS_CLASS_DICT[eval_metric_fn_key](categories=categories))
return evaluators_list
def evaluate(create_input_dict_fn, create_model_fn, eval_config, categories,
checkpoint_dir, eval_dir, graph_hook_fn=None, evaluator_list=None):
"""Evaluation function for detection models.
Args:
create_input_dict_fn: a function to create a tensor input dictionary.
create_model_fn: a function that creates a DetectionModel.
eval_config: a eval_pb2.EvalConfig protobuf.
categories: a list of category dictionaries. Each dict in the list should
have an integer 'id' field and string 'name' field.
checkpoint_dir: directory to load the checkpoints to evaluate from.
eval_dir: directory to write evaluation metrics summary to.
graph_hook_fn: Optional function that is called after the training graph is
completely built. This is helpful to perform additional changes to the
training graph such as optimizing batchnorm. The function should modify
the default graph.
evaluator_list: Optional list of instances of DetectionEvaluator. If not
given, this list of metrics is created according to the eval_config.
Returns:
metrics: A dictionary containing metric names and values from the latest
run.
"""
model = create_model_fn()
if eval_config.ignore_groundtruth and not eval_config.export_path:
logging.fatal('If ignore_groundtruth=True then an export_path is '
'required. Aborting!!!')
tensor_dict, losses_dict = _extract_predictions_and_losses(
model=model,
create_input_dict_fn=create_input_dict_fn,
ignore_groundtruth=eval_config.ignore_groundtruth)
def _process_batch(tensor_dict, sess, batch_index, counters,
losses_dict=None):
"""Evaluates tensors in tensor_dict, losses_dict and visualizes examples.
This function calls sess.run on tensor_dict, evaluating the original_image
tensor only on the first K examples and visualizing detections overlaid
on this original_image.
Args:
tensor_dict: a dictionary of tensors
sess: tensorflow session
batch_index: the index of the batch amongst all batches in the run.
counters: a dictionary holding 'success' and 'skipped' fields which can
be updated to keep track of number of successful and failed runs,
respectively. If these fields are not updated, then the success/skipped
counter values shown at the end of evaluation will be incorrect.
losses_dict: Optional dictonary of scalar loss tensors.
Returns:
result_dict: a dictionary of numpy arrays
result_losses_dict: a dictionary of scalar losses. This is empty if input
losses_dict is None.
"""
try:
if not losses_dict:
losses_dict = {}
result_dict, result_losses_dict = sess.run([tensor_dict, losses_dict])
counters['success'] += 1
except tf.errors.InvalidArgumentError:
logging.info('Skipping image')
counters['skipped'] += 1
return {}, {}
global_step = tf.train.global_step(sess, tf.train.get_global_step())
if batch_index < eval_config.num_visualizations:
tag = 'image-{}'.format(batch_index)
eval_util.visualize_detection_results(
result_dict,
tag,
global_step,
categories=categories,
summary_dir=eval_dir,
export_dir=eval_config.visualization_export_dir,
show_groundtruth=eval_config.visualize_groundtruth_boxes,
groundtruth_box_visualization_color=eval_config.
groundtruth_box_visualization_color,
min_score_thresh=eval_config.min_score_threshold,
max_num_predictions=eval_config.max_num_boxes_to_visualize,
skip_scores=eval_config.skip_scores,
skip_labels=eval_config.skip_labels,
keep_image_id_for_visualization_export=eval_config.
keep_image_id_for_visualization_export)
return result_dict, result_losses_dict
if graph_hook_fn: graph_hook_fn()
variables_to_restore = tf.global_variables()
global_step = tf.train.get_or_create_global_step()
variables_to_restore.append(global_step)
if eval_config.use_moving_averages:
variable_averages = tf.train.ExponentialMovingAverage(0.0)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
def _restore_latest_checkpoint(sess):
latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
saver.restore(sess, latest_checkpoint)
if not evaluator_list:
evaluator_list = get_evaluators(eval_config, categories)
metrics = eval_util.repeated_checkpoint_run(
tensor_dict=tensor_dict,
summary_dir=eval_dir,
evaluators=evaluator_list,
batch_processor=_process_batch,
checkpoint_dirs=[checkpoint_dir],
variables_to_restore=None,
restore_fn=_restore_latest_checkpoint,
num_batches=eval_config.num_examples,
eval_interval_secs=eval_config.eval_interval_secs,
max_number_of_evaluations=(1 if eval_config.ignore_groundtruth else
eval_config.max_evals
if eval_config.max_evals else None),
master=eval_config.eval_master,
save_graph=eval_config.save_graph,
save_graph_dir=(eval_dir if eval_config.save_graph else ''),
losses_dict=losses_dict)
return metrics