forked from ambakick/Person-Detection-and-Tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer_test.py
268 lines (227 loc) · 8.84 KB
/
trainer_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.trainer."""
import tensorflow as tf
from google.protobuf import text_format
from object_detection import trainer
from object_detection.core import losses
from object_detection.core import model
from object_detection.core import standard_fields as fields
from object_detection.protos import train_pb2
NUMBER_OF_CLASSES = 2
def get_input_function():
"""A function to get test inputs. Returns an image with one box."""
image = tf.random_uniform([32, 32, 3], dtype=tf.float32)
key = tf.constant('image_000000')
class_label = tf.random_uniform(
[1], minval=0, maxval=NUMBER_OF_CLASSES, dtype=tf.int32)
box_label = tf.random_uniform(
[1, 4], minval=0.4, maxval=0.6, dtype=tf.float32)
multiclass_scores = tf.random_uniform(
[1, NUMBER_OF_CLASSES], minval=0.4, maxval=0.6, dtype=tf.float32)
return {
fields.InputDataFields.image: image,
fields.InputDataFields.key: key,
fields.InputDataFields.groundtruth_classes: class_label,
fields.InputDataFields.groundtruth_boxes: box_label,
fields.InputDataFields.multiclass_scores: multiclass_scores
}
class FakeDetectionModel(model.DetectionModel):
"""A simple (and poor) DetectionModel for use in test."""
def __init__(self):
super(FakeDetectionModel, self).__init__(num_classes=NUMBER_OF_CLASSES)
self._classification_loss = losses.WeightedSigmoidClassificationLoss()
self._localization_loss = losses.WeightedSmoothL1LocalizationLoss()
def preprocess(self, inputs):
"""Input preprocessing, resizes images to 28x28.
Args:
inputs: a [batch, height_in, width_in, channels] float32 tensor
representing a batch of images with values between 0 and 255.0.
Returns:
preprocessed_inputs: a [batch, 28, 28, channels] float32 tensor.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
"""
true_image_shapes = [inputs.shape[:-1].as_list()
for _ in range(inputs.shape[-1])]
return tf.image.resize_images(inputs, [28, 28]), true_image_shapes
def predict(self, preprocessed_inputs, true_image_shapes):
"""Prediction tensors from inputs tensor.
Args:
preprocessed_inputs: a [batch, 28, 28, channels] float32 tensor.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Returns:
prediction_dict: a dictionary holding prediction tensors to be
passed to the Loss or Postprocess functions.
"""
flattened_inputs = tf.contrib.layers.flatten(preprocessed_inputs)
class_prediction = tf.contrib.layers.fully_connected(
flattened_inputs, self._num_classes)
box_prediction = tf.contrib.layers.fully_connected(flattened_inputs, 4)
return {
'class_predictions_with_background': tf.reshape(
class_prediction, [-1, 1, self._num_classes]),
'box_encodings': tf.reshape(box_prediction, [-1, 1, 4])
}
def postprocess(self, prediction_dict, true_image_shapes, **params):
"""Convert predicted output tensors to final detections. Unused.
Args:
prediction_dict: a dictionary holding prediction tensors.
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
**params: Additional keyword arguments for specific implementations of
DetectionModel.
Returns:
detections: a dictionary with empty fields.
"""
return {
'detection_boxes': None,
'detection_scores': None,
'detection_classes': None,
'num_detections': None
}
def loss(self, prediction_dict, true_image_shapes):
"""Compute scalar loss tensors with respect to provided groundtruth.
Calling this function requires that groundtruth tensors have been
provided via the provide_groundtruth function.
Args:
prediction_dict: a dictionary holding predicted tensors
true_image_shapes: int32 tensor of shape [batch, 3] where each row is
of the form [height, width, channels] indicating the shapes
of true images in the resized images, as resized images can be padded
with zeros.
Returns:
a dictionary mapping strings (loss names) to scalar tensors representing
loss values.
"""
batch_reg_targets = tf.stack(
self.groundtruth_lists(fields.BoxListFields.boxes))
batch_cls_targets = tf.stack(
self.groundtruth_lists(fields.BoxListFields.classes))
weights = tf.constant(
1.0, dtype=tf.float32,
shape=[len(self.groundtruth_lists(fields.BoxListFields.boxes)), 1])
location_losses = self._localization_loss(
prediction_dict['box_encodings'], batch_reg_targets,
weights=weights)
cls_losses = self._classification_loss(
prediction_dict['class_predictions_with_background'], batch_cls_targets,
weights=weights)
loss_dict = {
'localization_loss': tf.reduce_sum(location_losses),
'classification_loss': tf.reduce_sum(cls_losses),
}
return loss_dict
def restore_map(self, fine_tune_checkpoint_type='detection'):
"""Returns a map of variables to load from a foreign checkpoint.
Args:
fine_tune_checkpoint_type: whether to restore from a full detection
checkpoint (with compatible variable names) or to restore from a
classification checkpoint for initialization prior to training.
Valid values: `detection`, `classification`. Default 'detection'.
Returns:
A dict mapping variable names to variables.
"""
return {var.op.name: var for var in tf.global_variables()}
class TrainerTest(tf.test.TestCase):
def test_configure_trainer_and_train_two_steps(self):
train_config_text_proto = """
optimizer {
adam_optimizer {
learning_rate {
constant_learning_rate {
learning_rate: 0.01
}
}
}
}
data_augmentation_options {
random_adjust_brightness {
max_delta: 0.2
}
}
data_augmentation_options {
random_adjust_contrast {
min_delta: 0.7
max_delta: 1.1
}
}
num_steps: 2
"""
train_config = train_pb2.TrainConfig()
text_format.Merge(train_config_text_proto, train_config)
train_dir = self.get_temp_dir()
trainer.train(
create_tensor_dict_fn=get_input_function,
create_model_fn=FakeDetectionModel,
train_config=train_config,
master='',
task=0,
num_clones=1,
worker_replicas=1,
clone_on_cpu=True,
ps_tasks=0,
worker_job_name='worker',
is_chief=True,
train_dir=train_dir)
def test_configure_trainer_with_multiclass_scores_and_train_two_steps(self):
train_config_text_proto = """
optimizer {
adam_optimizer {
learning_rate {
constant_learning_rate {
learning_rate: 0.01
}
}
}
}
data_augmentation_options {
random_adjust_brightness {
max_delta: 0.2
}
}
data_augmentation_options {
random_adjust_contrast {
min_delta: 0.7
max_delta: 1.1
}
}
num_steps: 2
use_multiclass_scores: true
"""
train_config = train_pb2.TrainConfig()
text_format.Merge(train_config_text_proto, train_config)
train_dir = self.get_temp_dir()
trainer.train(create_tensor_dict_fn=get_input_function,
create_model_fn=FakeDetectionModel,
train_config=train_config,
master='',
task=0,
num_clones=1,
worker_replicas=1,
clone_on_cpu=True,
ps_tasks=0,
worker_job_name='worker',
is_chief=True,
train_dir=train_dir)
if __name__ == '__main__':
tf.test.main()