-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain.py
150 lines (135 loc) · 6.21 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import framework
import tasks
def register_args(parser: framework.helpers.ArgumentParser):
parser.add_argument("-batch_size", default=128)
parser.add_argument("-lr", default=1e-3)
parser.add_argument("-wd", default=0.0)
parser.add_argument("-lr_warmup", default=0)
parser.add_argument("-test_interval", default=1000)
parser.add_argument("-state_size", default=128)
parser.add_argument("-stop_after", default="None", parser=parser.int_or_none_parser)
parser.add_argument("-task", default="trafo_scan")
parser.add_argument("-dropout", default=0.0)
parser.add_argument("-grad_clip", default="1.0", parser=parser.float_or_none_parser)
parser.add_argument("-scan.train_split", default="simple", parser=parser.str_list_parser)
parser.add_argument("-scan.length_cutoff", default=22)
parser.add_argument("-layer_sizes", default="800,800,256", parser=parser.int_list_parser)
parser.add_argument("-transformer.n_heads", default=4)
parser.add_argument("-transformer.variant", default="scaledinit")
parser.add_argument("-transformer.ff_multiplier", default=2.0)
parser.add_argument("-transformer.encoder_n_layers", default=3)
parser.add_argument("-transformer.decoder_n_layers", default="3", parser=parser.int_or_none_parser)
parser.add_argument("-transformer.tied_embedding", default=True)
parser.add_argument("-test_batch_size", default="None", parser=parser.int_or_none_parser)
parser.add_argument("-dm_math.tasks", default="algebra__linear_1d", parser=parser.str_list_parser)
parser.add_argument("-dm_math.train_splits", default="easy,medium,hard", parser=parser.str_list_parser)
parser.add_argument("-lr_sched.steps", default="", parser=parser.int_list_parser)
parser.add_argument("-lr_sched.gamma", default=0.1)
parser.add_argument("-lr_sched.type", default="step", choice=["step", "noam"])
parser.add_argument("-optimizer", default="adam", choice=["adam", "sgd"])
parser.add_argument("-adam.betas", default="0.9,0.999", parser=parser.float_list_parser)
parser.add_argument("-amp", default=False)
parser.add_argument("-cogs.generalization_test_interval", default=2500)
parser.add_argument("-label_smoothing", default=0.0)
parser.add_argument("-pcfg.split", default="simple", choice=["simple", "productivity", "substitutivity",
"systematicity"])
parser.add_argument("-cfq.split", default="random", choice=["random", "query_complexity", "question_complexity",
"query_pattern", "question_pattern", "mcd1", "mcd2",
"mcd3"])
parser.add_argument("-max_length_per_batch", default="none", parser=parser.int_or_none_parser)
parser.add_argument("-log_sample_level_loss", default=False)
parser.add_profile([
parser.Profile("cfq_trafo", {
"task": "cfq_trafo",
"transformer.variant": "noscale",
"state_size": 128,
"transformer.n_heads": 16,
"transformer.ff_multiplier": 2,
"transformer.encoder_n_layers": 2,
"transformer.decoder_n_layers": 2,
"grad_clip": 1,
"stop_after": 50000,
"dropout": 0.1,
"batch_size": 512,
"lr": 1e-4,
}),
parser.Profile("cfq_universal_trafo", {
"transformer.variant": "universal_noscale",
"state_size": 256,
"transformer.n_heads": 4,
"transformer.ff_multiplier": 2,
"transformer.encoder_n_layers": 6,
"transformer.decoder_n_layers": 6,
}, include="cfq_trafo"),
parser.Profile("cogs_trafo_small", {
"task": "cogs_transformer",
"state_size": 512,
"transformer.n_heads": 4,
"transformer.ff_multiplier": 1,
"transformer.encoder_n_layers": 2,
"transformer.decoder_n_layers": 2,
"grad_clip": "none",
"stop_after": 50000,
"dropout": 0.1,
"batch_size": 128,
"lr": 2,
"lr_sched.type": "noam",
"lr_warmup": 4000,
}),
parser.Profile("deepmind_math", {
"task": "dm_math_transformer",
"lr": 1e-4,
"stop_after": 50000,
"batch_size": 256,
"mask_loss_weight": 0.001,
"state_size": 512,
"transformer.n_heads": 8,
"transformer.ff_multiplier": 4,
"transformer.encoder_n_layers": 6,
"transformer.decoder_n_layers": 6,
"test_batch_size": 1024,
"grad_clip": 0.1
}),
parser.Profile("pcfg_trafo", {
"task": "pcfg_transformer",
"state_size": 512,
"transformer.n_heads": 8,
"transformer.ff_multiplier": 4,
"transformer.encoder_n_layers": 6,
"transformer.decoder_n_layers": 6,
"lr": 1e-3,
"grad_clip": "1",
"stop_after": 1000000,
"batch_size": 64
}),
parser.Profile("trafo_scan", {
"lr": 1e-3,
"grad_clip": "5",
"stop_after": 15000,
"batch_size": 256,
"dropout": 0.5,
"embedding_size": 16,
"task": "trafo_scan",
"state_size": 128,
"transformer.n_heads": 8,
"test_batch_size": 2048
})
])
def main():
helper = framework.helpers.TrainingHelper(wandb_project_name="modules",
register_args=register_args, extra_dirs=["export", "model_weights"])
def invalid_task_error(_):
assert False, f"Invalid task: {helper.args.task}"
constructors = {
"pcfg_transformer": tasks.PCFGTransformer,
"cogs_transformer": tasks.COGSTransformer,
"trafo_scan": tasks.ScanTransformer,
"scan_resplit_transformer": tasks.ScanResplitTransformer,
"cfq_trafo": tasks.CFQTransformer,
"dm_math_transformer": tasks.DMMathTransformer,
}
task = constructors.get(helper.args.task, invalid_task_error)(helper)
task.train()
helper.finish()
if __name__ == "__main__":
main()