-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpymips.py
executable file
·1177 lines (1049 loc) · 46.7 KB
/
pymips.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# pymips.py
import re
import io
import os
import ctypes
import struct
import pickle
import argparse
from sys import exit
from sys import stdin
from sys import stdout
from sys import stderr
# MIPS Simulator: this program implements a simple MIPS simulator that
# both assembles and executes MIPS instructions. The simulator
# implements only a small subset of the MIPS architecture, documented
# here:
#
# Directives: the following directives serve as meta-instructions for
# the assembler
#
# .text - begin code section
# .data - begin data section
# .globl <symbol> - define global symbol at location
# .byte <value> [, <value>, ...] - define byte in data section
# .half <value> [, <value>, ...] - define half-word in data section
# .word <value> [, <value>, ...] - define word in data section
# .ascii <value> - define ascii string in data section
# .asciiz <value> - define zero-terminated ascii
# string in data section
# .space <amount> - allocate bytes in data section
#
# Labels: labels are resolved to runtime addresses in the program's
# text/data segments; they have the following form:
#
# <label>:
# where label is any combination of [a-zA-Z0-9_$]
#
# Instructions: the simulator implements a subset of the complete MIPS
# instruction set (mainly arithmetic, logic and load/store);
# the simulator doesn't conceptualize puesdo-instructions, instead
# making them the same as normal instructions
#
# add $d, $s, $t | $d = $s + $t | add registers, signed
# addu $d, $s, $t | $d = $s + $t | add registers, unsigned
# addi $d, $s, i | $d = $s + SE(i) | add immediate, signed
# addiu $d, $s, i | $d = $s + SE(i) | add immediate, unsigned
# and $d, $s, $t | $d = $s & $t | bit-and
# andi $d, $s, i | $d = $s & ZE(i) | bit-and immediate
# div $s, $t | hi = $s % $t, lo = $s / $t | division, signed
# divu $s, $t | hi = $s % $t, lo = $s / $t | division, unsigned
# mul $d, $s, $t | $d = $s * $t | multiplication, signed
# mulu $d, $s, $t | $d = $s * $t | multiplication, unsigned
# mult $s, $t | hi:lo = $s*$t | multiplication, signed
# multu $s, $t | hi:lo = $s*$t | multiplication, unsigned
# nor $d, $s, $t | $d = ~($s | $t) | bit-not-or
# or $d, $s, $t | $d = $s | $t | bit-or
# ori $d, $s, i | $d = $s | ZE(i) | bit-or, immediate
# rem $d, $s, a | $d = $s % $t | remainder (by variable or constant)
# sll $d, $s, a | $d = $s << a | left-shift (by variable or constant)
# sllv $d, $s, $t | $d = $s << $t | same as 'sll'
# sra $d, $s, a | $d = $s >> a with sign-ex | arithmetic right-shift (by variable or constant)
# srav $d, $s, $t | $d = $s >> $t with sign-ex | same as sra
# srl $d, $s, a | $d = $s >> a | logical right-shift (by variable or constant)
# srlv $d, $s, $t | $d = $s >> $t | same as srl
# sub $d, $s, $t | $d = $s - $t | subtraction, signed
# subu $d, $s, $t | $d = $s - $t | subtraction, unsigned
# xor $d, $s, $t | $d = $s ^ $t | bit-xor
# xori $d, $s, i | $d = $s ^ ZE(i) | bit-xor immediate
#
# slt $d, $s, $t | $d = $s < $t | set if less than signed
# sltu $d, $s, $t | $d = $s < $t | set if less than unsigned
# slti $d, $s, i | $d = $s < SE(i) | set if less than signed immediate
# sltiu $d, $s, i | $d = $s < SE(i) | set if less than signed immediate
#
# beq $s, $t, lbl | if $s==$t goto lbl | branch equal
# bgez $s, lbl | if $s >= 0 goto lbl | branch greater-than-or-equal-to zero
# bgtz $s, lbl | if $s > 0 goto lbl | branch greater-than zero
# blez $s, lbl | if $s <= 0 goto lbl | branch less-than-or-equal-to zero
# bne $s, $t, lbl | if $s!=$t goto lbl | branch not-equal
# blt $s, $t, lbl | if $s < $t goto lbl | branch less-than
# bgt $s, $t, lbl | if $s > $t goto lbl | branch greater-than
#
# j lbl | goto lbl | unconditional jump
# jal lbl | $ra = addr and jump | jump-and-link
# jalr $s | $ra = addr and jump to $s | jump-and-link (address in register)
# jr $s | jump to $s | jump to address in register
#
# la $t, addr | $t = addr | load literal, direct address (also supports indirect addressing)
# lhi $t, i | HI($t) = i | load high half-word immediate
# li $t, i | $t = i | load word immediate
# llo $t, i | LO($t) = i | load low half-word immediate
# lb $t, i($s) | $t = SE(MEM[$s+i]:1) | load byte signed (also supports direct addressing)
# lbu $t, i($s) | $t = ZE(MEM[$s+i]:1) | load byte unsigned (also supports direct addressing)
# lh $t, i($s) | $t = SE(MEM[$s+i]:2) | load half-word signed (also supports direct addressing)
# lhu $t, i($s) | $t = ZE(MEM[$s+i]:2) | load half-word unsigned (also supports direct addressing)
# lw $t, i($s) | $t = MEM[$s+i]:4 | load word (also supports direct addressing)
# mfhi $d | $d = hi | move hi-register value
# mflo $d | $d = lo | move lo-register value
# move $d, $t | $d = $t | copy register to another
# mthi $d | hi = $d | set hi-register value
# mtlo $d | lo = $d | set lo-register value
# sb $t, i($s) | MEM[$s+i]:1 = LB($t) | store byte (also supports direct addressing)
# sh $t, i($s) | MEM[$s+i]:2 = LB($t) | store half-word (also supports direct addressing)
# sw $t, i($s) | MEM[$s+i]:4 = LB($t) | store word (also supports direct addressing)
#
# nop | | do absolutely nothing (waste a cycle)
# syscall | | initiate system routine
#
# error reporting helper function
def runtime_error(msg):
stdout.flush()
stderr.write("pymips: error: {}\n".format(msg))
exit(1)
def error_on_line(msg,line):
stdout.flush()
stderr.write("pymips: error: line {0}: {1}\n".format(line,msg))
exit(1)
# instruction functions: each function performs the operations of its
# corresponding instruction; if 'sim' is None, then the function
# checks to make sure 'parts' is formatted correctly
def check_register_instr(parts):
# <REG> <REG> <REG>
if len(parts) != 3 or not parts[0] in MIPS_REGISTERS or not parts[1] in MIPS_REGISTERS \
or not parts[2] in MIPS_REGISTERS:
return False
return True
def check_register_instr2(parts):
# <REG> <REG>
if len(parts) != 2 or not parts[0] in MIPS_REGISTERS or not parts[1] in MIPS_REGISTERS:
return False
return True
REGEX_IMMED = re.compile('^-?[0-9]+$') # immediate must be an integer
def check_immed_instr(parts):
# <REG> <REG> <IMMED>
if len(parts) != 3 or not parts[0] in MIPS_REGISTERS or not parts[1] in MIPS_REGISTERS \
or not REGEX_IMMED.match(parts[2]):
return False
# convert immediate string to integer
parts[2] = int(parts[2])
return True
def check_direct_instr(parts,**kwargs):
# check direct addressing instruction
# <REG> <LITERAL>
# literal may already be converted
if len(parts) != 2 or not parts[0] in MIPS_REGISTERS:
return False
# if we cannot convert the literal, then assume we have a
# non-resolved label
if not isinstance(parts[1],(int,long)) \
and not REGEX_IMMED.match(parts[1]):
runtime_error("line {1}: cannot resolve label '{0}'".format(parts[1],kwargs['line']))
# convert immediate string to integer
parts[1] = int(parts[1])
return True
def check_direct_instr2(parts,**kwargs):
# <REG> <REG> <LITERAL>
# the literal may already be converted
if len(parts) != 3 or not parts[0] in MIPS_REGISTERS or \
not parts[1] in MIPS_REGISTERS:
return False
# if we cannot convert the literal, then assume we have a
# non-resolved label
if not isinstance(parts[2],(int,long)) \
and not REGEX_IMMED.match(parts[2]):
runtime_error("line {1}: cannot resolve label '{0}'".format(parts[2],kwargs['line']))
# convert immediate string to integer
parts[2] = int(parts[2])
return True
def check_jump_instr(parts,**kwargs):
# <IMMED>
# the immediate may already be converted
if len(parts) != 1:
return False
# if we cannot convert the literal, then assume we have a
# non-resolved label
if not isinstance(parts[0],(int,long)) \
and not REGEX_IMMED.match(parts[0]):
runtime_error("line {1}: cannot resolve label '{0}'".format(parts[0],kwargs['line']))
# convert immediate string to integer
parts[0] = int(parts[0])
return True
def check_jumpreg_instr(parts):
# <REG>
return not (len(parts) != 1 or not parts[0] in MIPS_REGISTERS)
REGEX_INDIR = re.compile('(-?[0-9]+)?\((.+)\)')
def check_indirect_instr(parts):
# check indirect addressing instruction format
# <REG> <[offset](REG)>
if not isinstance(parts[1],str):
return False
if len(parts) != 2 or not parts[0] in MIPS_REGISTERS:
return False
m = REGEX_INDIR.match(parts[1])
if not m or not m.group(2) in MIPS_REGISTERS:
return False
# convert last part to offset; add new part for source register
parts[1] = 0 if m.group(1) is None else int(m.group(1))
parts.append(m.group(2))
return True
def instr_add(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2])
sim.write_register(parts[0],ctypes.c_int32(t+u).value)
def instr_addu(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2])
sim.write_register(parts[0],ctypes.c_uint32(t+u).value)
def instr_addi(sim,parts,**kwargs):
if sim is None:
return check_immed_instr(parts)
t = sim.read_register(parts[1])
sim.write_register(parts[0],ctypes.c_int32(t+parts[2]).value)
def instr_addiu(sim,parts,**kwargs):
if sim is None:
return check_immed_instr(parts)
t = sim.read_register(parts[1])
sim.write_register(parts[0],ctypes.c_uint32(t + parts[2]).value)
def instr_and(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2])
sim.write_register(parts[0],t & u)
def instr_andi(sim,parts,**kwargs):
if sim is None:
return check_immed_instr(parts)
t = sim.read_register(parts[1])
sim.write_register(parts[0],ctypes.c_uint32(t & parts[2]).value)
def instr_div(sim,parts,**kwargs):
if sim is None:
return check_register_instr2(parts)
t = sim.read_register(parts[0])
u = sim.read_register(parts[1])
sim.write_register('HI',ctypes.c_int32(t % u).value)
sim.write_register('LO',ctypes.c_int32(t // u).value)
def instr_divu(sim,parts,**kwargs):
if sim is None:
return check_register_instr2(parts)
t = sim.read_register(parts[0])
u = sim.read_register(parts[1])
sim.write_register('HI',ctypes.c_uint32(t % u).value)
sim.write_register('LO',ctypes.c_uint32(t // u).value)
def instr_mul(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2])
sim.write_register(parts[0],ctypes.c_int32(t * u).value)
def instr_mulu(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2])
sim.write_register(parts[0],ctypes.c_uint32(t * u).value)
def instr_mult(sim,parts,**kwargs):
if sim is None:
return check_register_instr2(parts)
t = sim.read_register(parts[0]) * sim.read_register(parts[1])
sim.write_register('HI',ctypes.c_int32(t >> 32).value)
sim.write_register('LO',ctypes.c_int32(t).value)
def instr_multu(sim,parts,**kwargs):
if sim is None:
return check_register_instr2(parts)
t = sim.read_register(parts[0]) * sim.read_register(parts[1])
sim.write_register('HI',ctypes.c_uint32(t >> 32).value)
sim.write_register('LO',ctypes.c_uint32(t).value)
def instr_nor(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2])
sim.write_register(parts[0],ctypes.c_uint32(~(t | u)).value)
def instr_or(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2])
sim.write_register(parts[0],ctypes.c_uint32(t | u).value)
def instr_ori(sim,parts,**kwargs):
if sim is None:
return check_immed_instr(parts)
t = sim.read_register(parts[1])
sim.write_register(parts[0],ctypes.c_uint32(t | parts[2]).value)
def instr_rem(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts) or check_immed_instr(parts)
# Read operands: the right operand may be a register or an immediate.
t = sim.read_register(parts[1])
u = sim.read_register(parts[2]) if parts[2] in MIPS_REGISTERS else parts[2]
sim.write_register(parts[0],ctypes.c_uint32(t % u).value)
def instr_sll(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts) or check_immed_instr(parts)
# the second argument is a source register and the second could be
# either a register or an immediate (I handle both just to make
# sure)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2]) if parts[2] in MIPS_REGISTERS else parts[2]
sim.write_register(parts[0],ctypes.c_uint32(t << u).value)
def instr_sllv(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2])
sim.write_register(parts[0],ctypes.c_uint32(t << u).value)
def instr_sra(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts) or check_immed_instr(parts)
# the second argument is a source register and the second could be
# either a register or an immediate (I handle both just to make
# sure)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2]) if parts[2] in MIPS_REGISTERS else parts[2]
# this is an arithmetic shift; this means we must preserve the
# sign bit; we do this by bit-and'ing the complement of either all
# ones or all zeros having been shifted by the same amount
b = -1 if t & 0x80000000 else 0
sim.write_register(parts[0],ctypes.c_uint32((t >> u) & ~(b >> u)).value)
def instr_srav(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2])
b = -1 if t & 0x80000000 else 0
sim.write_register(parts[0],ctypes.c_uint32((t >> u) & ~(b >> u)).value)
def instr_srl(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts) or check_immed_instr(parts)
# the second argument is a source register and the second could be
# either a register or an immediate (I handle both just to make
# sure)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2]) if parts[2] in MIPS_REGISTERS else parts[2]
sim.write_register(parts[0],ctypes.c_uint32(t >> u).value)
def instr_srlv(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2])
sim.write_register(parts[0],ctypes.c_uint32(t >> u).value)
def instr_sub(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2])
sim.write_register(parts[0],ctypes.c_int32(t - u).value)
def instr_subu(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2])
sim.write_register(parts[0],ctypes.c_uint32(t - u).value)
def instr_xor(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts)
t = sim.read_register(parts[1])
u = sim.read_register(parts[2])
sim.write_register(parts[0],ctypes.c_uint32(t ^ u).value)
def instr_xori(sim,parts,**kwargs):
if sim is None:
return check_immed_instr(parts)
t = sim.read_register(parts[1])
u = ctypes.c_uint32(parts[2]).value
sim.write_register(parts[0],ctypes.c_uint32(t ^ u).value)
def instr_slt(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts)
t = ctypes.c_int32(sim.read_register(parts[1])).value
u = ctypes.c_int32(sim.read_register(parts[2])).value
sim.write_register(parts[0],int(t < u))
def instr_sltu(sim,parts,**kwargs):
if sim is None:
return check_register_instr(parts)
t = ctypes.c_uint32(sim.read_register(parts[1])).value
u = ctypes.c_uint32(sim.read_register(parts[2])).value
sim.write_register(parts[0],int(t < u))
def instr_slti(sim,parts,**kwargs):
if sim is None:
return check_immed_instr(parts)
t = ctypes.c_int32(sim.read_register(parts[1])).value
u = ctypes.c_int32(parts[2]).value
sim.write_register(parts[0],int(t < u))
def instr_sltiu(sim,parts,**kwargs):
if sim is None:
return check_immed_instr(parts)
t = ctypes.c_uint32(sim.read_register(parts[1])).value
u = ctypes.c_uint32(parts[2]).value
sim.write_register(parts[0],int(t < u))
def instr_beq(sim,parts,**kwargs):
if sim is None:
return check_direct_instr2(parts,**kwargs)
t = ctypes.c_int32(sim.read_register(parts[0])).value
u = ctypes.c_int32(sim.read_register(parts[1])).value
if t == u:
sim.progCounter = parts[2]
def instr_bgez(sim,parts,**kwargs):
if sim is None:
return check_direct_instr(parts,**kwargs)
t = ctypes.c_int32(sim.read_register(parts[0])).value
if t >= 0:
sim.progCounter = parts[1]
def instr_bgtz(sim,parts,**kwargs):
if sim is None:
return check_direct_instr(parts,**kwargs)
t = ctypes.c_int32(sim.read_register(parts[0])).value
if t > 0:
sim.progCounter = parts[1]
def instr_blez(sim,parts,**kwargs):
if sim is None:
return check_direct_instr(parts,**kwargs)
t = ctypes.c_int32(sim.read_register(parts[0])).value
if t <= 0:
sim.progCounter = parts[1]
def instr_bne(sim,parts,**kwargs):
if sim is None:
return check_direct_instr2(parts,**kwargs)
t = ctypes.c_int32(sim.read_register(parts[0])).value
u = ctypes.c_int32(sim.read_register(parts[1])).value
if t != u:
sim.progCounter = parts[2]
def instr_blt(sim,parts,**kwargs):
if sim is None:
return check_direct_instr2(parts,**kwargs)
t = ctypes.c_int32(sim.read_register(parts[0])).value
u = ctypes.c_int32(sim.read_register(parts[1])).value
if t < u:
sim.progCounter = parts[2]
def instr_bgt(sim,parts,**kwargs):
if sim is None:
return check_direct_instr2(parts,**kwargs)
t = ctypes.c_int32(sim.read_register(parts[0])).value
u = ctypes.c_int32(sim.read_register(parts[1])).value
if t > u:
sim.progCounter = parts[2]
def instr_j(sim,parts,**kwargs):
if sim is None:
return check_jump_instr(parts,**kwargs)
sim.progCounter = parts[0]
def instr_jal(sim,parts,**kwargs):
if sim is None:
return check_jump_instr(parts,**kwargs)
sim.write_register('$ra',sim.progCounter) # link
sim.progCounter = parts[0]
def instr_jalr(sim,parts,**kwargs):
if sim is None:
return check_jumpreg_instr(parts)
sim.write_register('$ra',sim.progCounter) # link
sim.progCounter = sim.read_register(parts[0])
def instr_jr(sim,parts,**kwargs):
if sim is None:
return check_jumpreg_instr(parts)
sim.progCounter = sim.read_register(parts[0])
def instr_la(sim,parts,**kwargs):
if sim is None:
return check_direct_instr(parts,**kwargs) or check_indirect_instr(parts)
if len(parts) == 2:
addr = parts[1]
else:
addr = parts[1] + sim.read_register(parts[2])
sim.write_register(parts[0],addr)
def instr_lhi(sim,parts,**kwargs):
if sim is None:
return check_direct_instr(parts,**kwargs)
# grab current register value and place in upper word
t = (sim.read_register(parts[0]) & 0xffff) | (parts[1] << 16)
sim.write_register(parts[0],t)
def instr_li(sim,parts,**kwargs):
return instr_la(sim,parts)
def instr_llo(sim,parts,**kwargs):
if sim is None:
return check_direct_instr(parts,**kwargs)
# grab current register value and place in upper word
t = (sim.read_register(parts[0]) & 0xffff0000) | (parts[1] << 16)
sim.write_register(parts[0],t)
def instr_lb(sim,parts,**kwargs):
if sim is None:
return check_indirect_instr(parts) or check_direct_instr(parts,**kwargs)
if len(parts) == 2:
# direct
addr = parts[1]
else:
# indirect (i.e. from register)
addr = parts[1] + sim.read_register(parts[2])
sim.write_register(parts[0],sim.read_byte(addr))
def instr_lbu(sim,parts,**kwargs):
if sim is None:
return check_indirect_instr(parts) or check_direct_instr(parts,**kwargs)
if len(parts) == 2:
# direct
addr = parts[1]
else:
# indirect (i.e. from register)
addr = parts[1] + sim.read_register(parts[2])
sim.write_register(parts[0],ctypes.c_uint32(sim.read_byte(addr)).value)
def instr_lh(sim,parts,**kwargs):
if sim is None:
return check_indirect_instr(parts) or check_direct_instr(parts,**kwargs)
if len(parts) == 2:
# direct
addr = parts[1]
else:
# indirect (i.e. from register)
addr = parts[1] + sim.read_register(parts[2])
sim.write_register(parts[0],sim.read_halfword(addr))
def instr_lhu(sim,parts,**kwargs):
if sim is None:
return check_indirect_instr(parts) or check_direct_instr(parts,**kwargs)
if len(parts) == 2:
# direct
addr = parts[1]
else:
# indirect (i.e. from register)
addr = parts[1] + sim.read_register(parts[2])
sim.write_register(parts[0],ctypes.c_uint32(sim.read_halfword(addr)).value)
def instr_lw(sim,parts,**kwargs):
if sim is None:
return check_indirect_instr(parts) or check_direct_instr(parts,**kwargs)
if len(parts) == 2:
# direct
addr = parts[1]
else:
# indirect (i.e. from register)
addr = parts[1] + sim.read_register(parts[2])
sim.write_register(parts[0],sim.read_word(addr))
def instr_mfhi(sim,parts,**kwargs):
if sim is None:
return check_jumpreg_instr(parts)
t = sim.read_register('HI')
sim.write_register(parts[0],t)
def instr_mflo(sim,parts,**kwargs):
if sim is None:
return check_jumpreg_instr(parts)
t = sim.read_register('LO')
sim.write_register(parts[0],t)
def instr_move(sim,parts,**kwargs):
if sim is None:
return len(parts) == 2 and parts[0] in MIPS_REGISTERS \
and parts[1] in MIPS_REGISTERS
t = sim.read_register(parts[1])
sim.write_register(parts[0],t)
def instr_mthi(sim,parts,**kwargs):
if sim is None:
return check_jumpreg_instr(parts)
t = sim.read_register(parts[0])
sim.write_register('HI',t)
def instr_mtlo(sim,parts,**kwargs):
if sim is None:
return check_jumpreg_instr(parts)
t = sim.read_register(parts[0])
sim.write_register('LO',t)
def instr_sb(sim,parts,**kwargs):
if sim is None:
return check_indirect_instr(parts) or check_direct_instr(parts,**kwargs)
if len(parts) == 2:
# direct
addr = parts[1]
else:
# indirect (i.e. from register)
addr = parts[1] + sim.read_register(parts[2])
sim.write_byte(addr,sim.read_register(parts[0]))
def instr_sh(sim,parts,**kwargs):
if sim is None:
return check_indirect_instr(parts) or check_direct_instr(parts,**kwargs)
if len(parts) == 2:
# direct
addr = parts[1]
else:
# indirect (i.e. from register)
addr = parts[1] + sim.read_register(parts[2])
sim.write_halfword(addr,sim.read_register(parts[0]))
def instr_sw(sim,parts,**kwargs):
if sim is None:
return check_indirect_instr(parts) or check_direct_instr(parts,**kwargs)
if len(parts) == 2:
# direct
addr = parts[1]
else:
# indirect (i.e. from register)
addr = parts[1] + sim.read_register(parts[2])
sim.write_word(addr,sim.read_register(parts[0]))
def instr_syscall(sim,parts,**kwargs):
if sim is None:
return len(parts) == 0
# simulate the SPIM system calls
v = sim.read_register('$v0')
if v == 1:
# print_int ($a0 = word to print)
system.print_int(sim.read_register('$a0'))
elif v == 4:
# print_string ($a0 = pointer to null-terminated buffer)
system.print_string(sim.read_string(sim.read_register('$a0')))
elif v == 5:
# read_int
i = system.read_int()
sim.write_register('$v0',i)
elif v == 8:
# read_string ($a0 = pointer to buffer, $a1 = amount); returns
# number of bytes read
n = system.read_string(sim,sim.read_register('$a0'),sim.read_register('$a1'))
sim.write_register('$v0',n)
elif v == 10:
# exit ($a0 = process return code)
system.exit(sim.read_register('$a0'))
elif v == 11:
# print_character ($a0 = char)
system.print_character(sim.read_register('$a0'))
elif v == 12:
# read_character
sim.write_register('$v0',system.read_character())
else:
runtime_error("could not execute system call {0}: no such service".format(v))
# define useful constant information for the program
STACK_SPACE = 1048576
MIPS_INSTRUCTIONS = {'add':instr_add,'addu':instr_addu,'addi':instr_addi,'addiu':instr_addiu,
'and':instr_and,'andi':instr_andi,'div':instr_div,'divu':instr_divu,
'mul':instr_mul,'mulu':instr_mulu,'mult':instr_mult,'multu':instr_multu,
'nor':instr_nor,'or':instr_or,'ori':instr_ori,'sll':instr_sll,'sllv':instr_sllv,
'sra':instr_sra,'srav':instr_srav,'srl':instr_srl,'srlv':instr_srlv,'sub':instr_sub,
'subu':instr_subu,'xor':instr_xor,'xori':instr_xori,'slt':instr_slt,
'sltu':instr_sltu,'slti':instr_slti,'sltiu':instr_sltiu,'beq':instr_beq,'bgez':instr_bgez,
'bgtz':instr_bgtz,'blez':instr_blez,'bne':instr_bne,'blt':instr_blt,'bgt':instr_bgt,
'j':instr_j,'jal':instr_jal,'jalr':instr_jalr,'jr':instr_jr,'la':instr_la,'lhi':instr_lhi,
'li':instr_li,'llo':instr_llo,'lb':instr_lb,'lbu':instr_lbu,'lh':instr_lh,'lhu':instr_lhu,
'lw':instr_lw,'mfhi':instr_mfhi,'mflo':instr_mflo,'move':instr_move,'mthi':instr_mthi,
'mtlo':instr_mtlo,'sb':instr_sb,'sh':instr_sh,'sw':instr_sw,'syscall':instr_syscall,
'rem':instr_rem,'nop':lambda _,__,**___: True}
MIPS_REGISTERS = {'$0' : 0, '$zero' : 0, '$r0' : 0,
'$1' : 4,'$at' : 4, '$2' : 8, '$v0' : 8,
'$3' : 12,'$v1' : 12, '$4' : 16, '$a0' : 16,
'$5' : 20,'$a1' : 20, '$6' : 24, '$a2' : 24,
'$7' : 28,'$a3' : 28, '$8' : 32, '$t0' : 32,
'$9' : 36,'$t1' : 36, '$10' : 40, '$t2' : 40,
'$11' : 44,'$t3' : 44, '$12' : 48, '$t4' : 48,
'$13' : 52,'$t5' : 52, '$14' : 56, '$t6' : 56,
'$15' : 60,'$t7' : 60, '$16' : 64, '$s0' : 64,
'$17' : 68, '$s1' : 68, '$18' : 72, '$s2' : 72,
'$19' : 76, '$s3' : 76, '$20' : 80, '$s4' : 80,
'$21' : 84, '$s5' : 84, '$22' : 88, '$s6' : 88,
'$23' : 92, '$s7' : 92, '$24' : 96, '$t8' : 96,
'$25' : 100, '$t9' : 100, '$26' : 104, '$k0' : 104,
'$27' : 108, '$k1' : 108, '$28' : 112, '$gp' : 112,
'$29' : 116, '$sp' : 116, '$30' : 120, '$fp' : 120, '$s8' : 120,
'$31' : 124, '$ra' : 124, 'HI' : 128, 'LO' : 132}
STRING_ESCAPES = ((r'\\a','\x07'),(r'\\b','\x08'),(r'\\f','\x0c'),(r'\\n','\x0a'),
(r'\\r','\x0d'),(r'\\t','\x09'),(r'\\v','\x0b'),(r'\\\\',r'\x5c'),
(r'\\\'','\x27'),(r'\\"','\x22'),(r'\\([0-7]{3})',lambda x:chr(int(x.group(1),8))),
(r'\\([0-9a-f]{2})',lambda x:chr(int(x.group(1),16))))
LABEL_INSTRS = ['beq','bgez','bgtz','blez','bne','blt','bgt','j','jal','jalr','jr','la','lb','lbu','lh','lhu',
'lw','sw','sh','sw'] # only these instructions can resolve labels
SHEBANG = "#!/usr/bin/env pymips\n"
class MIPSSystem:
REGEX_TOKEN = re.compile('\s*([^\s]+)')
def __init__(self):
self.buf = ""
self.fdtable = {}
def exit(self,v):
exit(v)
def print_int(self,i):
stdout.write("{0}".format(i))
def print_string(self,s):
stdout.write(s)
def print_character(self,v):
stdout.write(chr(v))
def read_int(self):
tok = self.read_token()
return int(tok)
def read_character(self):
# return the character as an integer (its ordinal value)
c = self.buf[:1]
if len(c) == 0:
self.buf = stdin.readline()
if len(self.buf) == 0:
runtime_error("unexpected EOF on read operation")
c = self.buf[:1]
self.buf = self.buf[1:]
return ord(c)
def read_string(self,sim,addr,amount):
# this works similarly to 'fgets'
s = ""
# pop off anything from the buffer within the amount of bytes
# requested or until a newline has been read; if the buffer
# becomes empty before we have read the requisite number of
# bytes, read another line into the buffer
while amount > 0:
# check for newlines in the input stream
p = self.buf.find("\n")
if p != -1:
p += 1 # include newline in buffer (potentially)
if p > amount:
p = amount
s += self.buf[:p]
self.buf = self.buf[p:]
break
amount -= len(self.buf)
s += self.buf[:amount]
self.buf = self.buf[amount:]
if len(self.buf) == 0:
self.buf = stdin.readline()
if len(self.buf) == 0:
break
# write the string into simulator's memory at the specified
# address and return the number of bytes written
sim.write_memory(addr,s)
return len(s)
def read_token(self):
# if we cannot read a token from the buffer, then the buffer
# needs to be updated
while True:
m = MIPSSystem.REGEX_TOKEN.match(self.buf)
if m:
break
# if we didn't match then only whitespaces were in the
# buffer; so replace the buffer with a new line
self.buf = stdin.readline()
if len(self.buf) == 0:
runtime_error("unexpected EOF on read operation")
tok = m.group(1)
self.buf = self.buf[m.end(1):]
return tok
class MIPSSimulator:
def __init__(self,f):
# load information from pickle file; this consists of the
# program's text instructions and its data segment memory; we
# first must read off the shebang that lets the file be
# executable; then the file stream is ready to be unpickled
f.read(len(SHEBANG))
t = pickle.load(f)
self.instr = t[0]
self.memory = io.BytesIO(t[1]) # main memory
datalen = self.memory.seek(0,2) # calculate number of bytes in data segment
self.memory.seek(0)
# allocate registers as a memory stream; each register has a
# constant offset into this memory
self.regmem = io.BytesIO()
self.regmem.seek(200)
self.regmem.write("\x00")
self.regmem.seek(0)
# position the stack pointer register at the top of the main
# memory stream
self.maxaddr = STACK_SPACE + datalen
self.write_register('$sp',self.maxaddr)
# create the program counter (this is the offset within the
# list of instructions of the next instruction to execute)
self.progCounter = 0
def write_register(self,reg,value):
# each register is a 4-byte word; value should be a Python
# 'long/int' that we wrap into a word and write to the memory
# stream
self.regmem.seek(MIPS_REGISTERS[reg])
self.regmem.write(struct.pack('<i',ctypes.c_int32(value).value))
def read_register(self,reg):
# read a 4-byte value from the register memory stream; the
# result should be a Python 'long/int'
self.regmem.seek(MIPS_REGISTERS[reg])
mem = self.regmem.read(4)
return struct.unpack('<i',mem)[0]
def write_memory(self,addr,data):
# write some data to the main memory stream
if addr+len(data) > self.maxaddr or addr < 0:
raise Exception('segmentation fault: attempted to write outside of allocated memory segment')
self.memory.seek(addr)
return self.memory.write(data)
def read_memory(self,addr,length):
# read some data from main memory
if addr+length > self.maxaddr or addr < 0:
raise Exception('segmentation fault: attempted to read outside of allocated memory segment')
self.memory.seek(addr)
return self.memory.read(length)
def write_word(self,addr,value):
# write a word to main memory
self.write_memory(addr,struct.pack('<i',ctypes.c_int32(value).value))
def read_word(self,addr):
# read a word from main memory
mem = self.read_memory(addr,4)
return struct.unpack('<i',mem)[0]
def write_halfword(self,addr,value):
self.write_memory(addr,struct.pack('<h',ctypes.c_int16(value).value))
def read_halfword(self,addr):
mem = self.read_memory(addr,2)
return struct.unpack('<h',mem)[0]
def write_byte(self,addr,value):
self.write_memory(addr,struct.pack('<b',ctypes.c_int8(value).value))
def read_byte(self,addr):
mem = self.read_memory(addr,1)
return struct.unpack('<b',mem)[0]
def read_string(self,addr):
s = ""
while True:
bu = self.read_byte(addr)
if bu == 0:
break
s += chr(bu)
addr += 1
return s
def simulation(self):
# run the simulation
while True:
if self.progCounter >= len(self.instr):
runtime_error("attempted to execute non-instruction: bad offset in program")
# fetch current instruction; update program counter next
# in case a jump happens during execution of the
# instruction
i = self.instr[self.progCounter]
self.progCounter += 1
try:
MIPS_INSTRUCTIONS[i[0]](self,i[1:])
except Exception as e:
runtime_error(str(e))
class MIPSParser:
REGEX_DIRECTIVE = re.compile('(?:\s*#.*\n)*\s*\.([a-z]+)')
REGEX_LABEL = re.compile('(?:\s*#.*\n)*\s*([a-zA-Z0-9_$]+):')
REGEX_ANY = re.compile('(?:\s*#.*\n)*\s*([^#\n]*[^#\s])?\s*')
REGEXES = [(REGEX_DIRECTIVE,'directive'),(REGEX_LABEL,'label'),(REGEX_ANY,'any')]
def __init__(self,f):
self.content = f.read().replace("\r","")
self.globl = [] # store global symbol details
self.data = [] # store data segment details
self.instr = [] # store instruction details
# try to split the assembly code into directives, labels and
# everything else
pos = 0
line = 1
things = []
while pos < len(self.content):
for regex, kind in MIPSParser.REGEXES:
m = regex.match(self.content,pos)
if m:
break
if m is None:
error_on_line("bad input: '{0}'".format(self.content[pos:]),
line)
lno = -1
while pos < m.end(0):
if self.content[pos] == "\n":
line += 1
if pos == m.start(1):
lno = line
pos += 1
if m.group(1) is not None:
things.append((m.group(1),kind,lno))
self.preprocess(things)
def preprocess(self,things):
# go through the things we just parsed; assign them meaning
# within the context of the program; labels are resolved to
# addresses at a later stage
mode = state = label = ''
for content, kind, line in things:
if kind == 'directive':
if content == 'text':
mode = 'text'
elif content == 'data':
mode = 'data'
state = ''
elif content == 'globl':
state = 'globl'
elif content in ['byte','half','word','ascii','asciiz','space']:
state = content
else:
error_on_line("directive '{0}' is not recognized".format(content),line)
elif kind == 'label':
label = content
elif kind == 'any':
if mode == 'data':
if state in ['byte','half','word']:
# parse a list of comma separated integers and
# assign a data entry
try:
self.data.append((state,map(int,re.split('[,\s]+',content)),label,line))
except ValueError:
error_on_line("'{0}' directive requires integer argument".format(state),line)
elif state in ['ascii','asciiz']:
# this data directive only allows a single entry
# to be specified (unlike byte and word); we do
# have to unpack the double-quoted string
if len(content) < 2 or content[0] != '"' or content[len(content)-1] != '"':
error_on_line("'{0}' directive requires character string argument".format(state),line)
self.data.append((state,(content[1:len(content)-1],),label,line))
elif state == 'space':
try:
self.data.append((state,(int(content),),label,line))
except ValueError:
error_on_line("'space' directive requires integer allocation amount argument",line)
else:
if state == 'globl':
error_on_line("globl symbol '{0}' must be in text segment".format(content),line)
error_on_line("cannot understand '{0}'".format(content),line)
elif mode == 'text':
if state != '':