-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathtrain_multi_gpus.py
239 lines (202 loc) · 8.84 KB
/
train_multi_gpus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import yaml
import time
import torch
import argparse
import importlib
import torch.distributed
from torch.backends import cudnn
from tensorboardX import SummaryWriter
from shutil import copy2
import torch.multiprocessing as mp
import torch.nn as nn
import torch.distributed as dist
import numpy as np
def init_np_seed(worker_id):
seed = torch.initial_seed()
np.random.seed(seed % 4294967296)
def reduce_tensor(tensor, world_size=None):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
if world_size is None:
world_size = dist.get_world_size()
rt /= world_size
return rt
def get_args(ngpus_per_node):
# command line args
parser = argparse.ArgumentParser(
description='Flow-based Point Cloud Generation Experiment')
parser.add_argument('config', type=str,
help='The configuration file.')
# distributed training
parser.add_argument('--batch_size', default=None, type=int,
help='Total number of batches (None will read batch size from the [cfg]).')
parser.add_argument('--world_size', default=1, type=int,
help='Number of distributed nodes.')
parser.add_argument('--dist_url', default='tcp://127.0.0.1:9991', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist_backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--local_rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use. None means using all '
'available GPUs.')
parser.add_argument('--sync_bn', action='store_true',
help="Whether use syncrhonized batch normalization")
# Resume:
parser.add_argument('--resume', default=False, action='store_true')
parser.add_argument('--pretrained', default=None, type=str,
help="Pretrained cehckpoint")
# Test run:
parser.add_argument('--test_run', default=False, action='store_true')
args = parser.parse_args()
def dict2namespace(config):
namespace = argparse.Namespace()
for key, value in config.items():
if isinstance(value, dict):
new_value = dict2namespace(value)
else:
new_value = value
setattr(namespace, key, new_value)
return namespace
# parse config file
with open(args.config, 'r') as f:
config = yaml.load(f)
config = dict2namespace(config)
# Create log_name
cfg_file_name = os.path.splitext(os.path.basename(args.config))[0]
run_time = time.strftime('%Y-%b-%d-%H-%M-%S')
# Currently save dir and log_dir are the same
config.log_name = "logs/%s_%s" % (cfg_file_name, run_time)
config.save_dir = "logs/%s_%s" % (cfg_file_name, run_time)
config.log_dir = "logs/%s_%s" % (cfg_file_name, run_time)
if args.local_rank % ngpus_per_node == 0:
os.makedirs(config.log_dir+'/config', exist_ok=True)
copy2(args.config, config.log_dir+'/config')
return args, config
def main_worker(gpu, ngpus_per_node, cfg, args):
# basic setup
cudnn.benchmark = True
# basic setup
cudnn.benchmark = True
args.gpu = gpu
args.rank = gpu
assert args.gpu is not None
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
print("Use GPU: {} for training".format(args.gpu))
print("Rank: %d\tNGPUs: %d\tGPU:%d" % (args.rank, ngpus_per_node, gpu))
dist.init_process_group(
backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
if args.rank % ngpus_per_node == 0:
writer = SummaryWriter(logdir=cfg.log_name)
else:
writer = None
with torch.cuda.device(args.gpu):
trainer_lib = importlib.import_module(cfg.trainer.type)
trainer = trainer_lib.Trainer(cfg, args)
def wrapper(m):
return nn.parallel.DistributedDataParallel(
m, device_ids=[args.gpu], output_device=args.gpu,
check_reduction=True)
trainer.multi_gpu_wrapper(wrapper)
torch.cuda.set_device(args.gpu)
if args.batch_size is not None:
cfg.data.batch_size = int(args.batch_size / ngpus_per_node)
cfg.workers = 0
# initialize datasets and loaders
data_lib = importlib.import_module(cfg.data.type)
tr_dataset, te_dataset = data_lib.get_datasets(cfg.data, args)
train_sampler = torch.utils.data.distributed.DistributedSampler(
tr_dataset)
train_loader = torch.utils.data.DataLoader(
dataset=tr_dataset, batch_size=cfg.data.batch_size,
shuffle=(train_sampler is None),
num_workers=cfg.data.num_workers, pin_memory=True,
sampler=train_sampler, drop_last=True, worker_init_fn=init_np_seed)
test_loader = torch.utils.data.DataLoader(
dataset=te_dataset, batch_size=cfg.data.batch_size, shuffle=False,
num_workers=cfg.data.num_workers, pin_memory=True, drop_last=False,
worker_init_fn=init_np_seed)
start_epoch = 0
start_time = time.time()
if args.resume:
if args.pretrained is not None:
start_epoch = trainer.resume(args.pretrained)
else:
start_epoch = trainer.resume(cfg.resume.dir)
# If test run, go through the validation loop first
if args.test_run:
trainer.save(epoch=-1, step=-1)
val_info = trainer.validate(test_loader, epoch=-1)
for k in val_info.keys():
v = val_info[k]
if not isinstance(v, float):
v = reduce_tensor(v).detach().cpu().item()
val_info[k] = v
trainer.log_val(val_info, writer=writer, epoch=-1)
# main training loop
print("Start epoch: %d End epoch: %d" % (start_epoch, cfg.trainer.epochs))
step = 0
for epoch in range(start_epoch, cfg.trainer.epochs):
# train for one epoch
for bidx, data in enumerate(train_loader):
step = bidx + len(train_loader) * epoch + 1
logs_info = trainer.update(data)
if step % int(cfg.viz.log_freq) == 0:
duration = time.time() - start_time
start_time = time.time()
print("[Rank %d] Epoch %d Batch [%2d/%2d] Time [%3.2fs] Loss %2.5f"
% (args.rank, epoch, bidx, len(train_loader),
duration, logs_info['loss']))
visualize = step % int(cfg.viz.viz_freq) == 0
for k in logs_info.keys():
if not ('loss' in k):
continue
v = logs_info[k]
if not isinstance(v, float):
v = reduce_tensor(v)
logs_info[k] = v
trainer.log_train(
logs_info, data,
writer=writer, epoch=epoch, step=step,
visualize=visualize)
if args.rank % ngpus_per_node == 0:
# Save first so that even if the visualization bugged,
# we still have something
if (epoch + 1) % int(cfg.viz.save_freq) == 0:
trainer.save(epoch=epoch, step=step)
if (epoch + 1) % int(cfg.viz.val_freq) == 0:
val_info = trainer.validate(test_loader, epoch=epoch)
for k in val_info.keys():
v = val_info[k]
if not isinstance(v, float):
v = reduce_tensor(v).detach().cpu().item()
val_info[k] = v
trainer.log_val(val_info, writer=writer, epoch=epoch)
# Signal the trainer to cleanup now that an epoch has ended
trainer.epoch_end(epoch, writer=writer)
writer.close()
def main():
# command line args
ngpus_per_node = torch.cuda.device_count()
args, cfg = get_args(ngpus_per_node)
if args.gpu is not None:
print('WARN: You have chosen a specific GPU. This will completely '
'disable data parallelism.')
assert False
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
if args.sync_bn:
assert False, "Do not support syncrhonized batch norm so far"
print("Arguments:")
print(args)
print("Configuration:")
print(cfg)
args.world_size = ngpus_per_node
mp.spawn(main_worker, nprocs=ngpus_per_node,
args=(ngpus_per_node, cfg, args))
if __name__ == '__main__':
main()