-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
142 lines (120 loc) · 4.78 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/env python
# coding=utf-8
import logging
import os
import random
import sys
import time
import datasets
import torch
import torch.distributed as dist
import transformers
from peft import LoraConfig, PeftModel, TaskType, get_peft_model, prepare_model_for_kbit_training
from transformers import (AutoModelForCausalLM, AutoTokenizer,
DataCollatorForSeq2Seq, HfArgumentParser, Trainer,
set_seed)
from datasets import load_dataset
from utils.prompter import Prompter
from utils.data_arguments import DataArguments
from utils.model_arguments import ModelArguments
from transformers import TrainingArguments
from transformers import BitsAndBytesConfig
logger = logging.getLogger(__name__)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def main():
parser = HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu},"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training parameters {training_args}")
logger.info(f"Model parameters {model_args}")
logger.info(f"Dataset parameters {data_args}")
set_seed(training_args.seed)
config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
)
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path, torch_dtype=model_args.torch_dtype, quantization_config=config)
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=model_args.lora_r,
lora_alpha=model_args.lora_alpha,
lora_dropout=model_args.lora_dropout,
target_modules=model_args.lora_target_modules,
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
print(model)
prompter = Prompter('alpaca')
data = load_dataset("json", data_files=data_args.train_files)
def tokenize(prompt, add_eos_token=True):
result = tokenizer(
prompt,
truncation=True,
max_length=data_args.max_seq_length,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < data_args.max_seq_length
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
full_prompt = prompter.generate_prompt(
data_point["instruction"],
data_point["input"],
data_point["output"],
)
tokenized_full_prompt = tokenize(full_prompt)
return tokenized_full_prompt
train_dataset = data["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = load_dataset("json", data_files=data_args.val_files)
val_dataset = val_data["train"].shuffle().map(generate_and_tokenize_prompt)
# Training
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
data_collator=DataCollatorForSeq2Seq(
tokenizer=tokenizer, model=model, padding="longest")
)
train_result = trainer.train()
metrics = train_result.metrics
metrics["train_samples"] = len(train_dataset)
trainer.log_metrics("train", metrics)
if __name__ == "__main__":
from huggingface_hub import login
HF_TOKEN=''
login(token=HF_TOKEN)
main()