-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathdijkstra.go
266 lines (252 loc) · 7.08 KB
/
dijkstra.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
package dijkstra
import (
"cmp"
"math"
"slices"
)
// BestPath contains the solution of the most optimal path
type BestPath[T any] struct {
Distance uint64
Path []T
}
type BestPaths[T any] struct {
Distance uint64
Paths [][]T
}
func (bps BestPaths[T]) SmallestPath() BestPath[T] {
if len(bps.Paths) == 0 {
return BestPath[T]{}
}
smallest := slices.MinFunc(bps.Paths, func(a, b []T) int {
return cmp.Compare(len(a), len(b))
})
return BestPath[T]{
Distance: bps.Distance,
Path: smallest,
}
}
type currentDistance struct {
id int
distance uint64
}
const (
listShortAuto = iota
listLongAuto
listShortPQ
listLongPQ
listShortLL
listLongLL
)
// Shortest calculates the shortest path from src to dest
func (g Graph) Shortest(src, dest int) (BestPath[int], error) {
return g.evaluate(src, dest, true, listShortAuto)
}
// Longest calculates the longest path from src to dest
func (g Graph) Longest(src, dest int) (BestPath[int], error) {
return g.evaluate(src, dest, false, listLongAuto)
}
// ShortestAll calculates all of the longest paths from src to dest
func (g Graph) ShortestAll(src, dest int) (BestPaths[int], error) {
return g.evaluateAll(src, dest, true, listShortAuto)
}
// LongestAll calculates all of the longest paths from src to dest
func (g Graph) LongestAll(src, dest int) (BestPaths[int], error) {
return g.evaluateAll(src, dest, false, listLongAuto)
}
func (g Graph) getList(i int) dijkstraList {
switch i {
case listShortAuto:
//LL seems to be faster for less than 100 verticies
if len(g.vertexArcs) < 100 {
return g.getList(listShortLL)
} else {
return g.getList(listShortPQ)
}
case listLongAuto:
//LL seems to be faster for less than 100 verticies
if len(g.vertexArcs) < 100 {
return g.getList(listLongLL)
} else {
return g.getList(listLongPQ)
}
case listShortPQ:
return priorityQueueNewShort()
case listLongPQ:
return priorityQueueNewLong()
case listShortLL:
return linkedListNewShort()
case listLongLL:
return linkedListNewLong()
default:
panic(i)
}
}
func (g Graph) evaluate(src, dest int, shortest bool, listOption int) (BestPath[int], error) {
if err := g.vertexValid(src); err != nil {
return BestPath[int]{}, err
}
if err := g.vertexValid(dest); err != nil {
return BestPath[int]{}, err
}
var current currentDistance
visitedDest := false
var newDefault uint64
var best uint64
var better = func(a, b uint64) bool {
return a >= b
}
var shouldSkip = func(currentDistance, best, storedDistance uint64) bool {
return currentDistance < storedDistance
}
if shortest {
newDefault = uint64(math.MaxUint64) - 2
best = uint64(math.MaxUint64)
better = func(a, b uint64) bool {
return a < b
}
shouldSkip = func(currentDistance, best, storedDistance uint64) bool {
return currentDistance >= best || currentDistance > storedDistance
}
}
var visiting = g.getList(listOption)
distances := make([]uint64, len(g.vertexArcs))
bestVerticie := make([]int, len(g.vertexArcs))
for i := range bestVerticie {
bestVerticie[i] = -1
distances[i] = newDefault
}
distances[src] = 0
visiting.PushOrdered(currentDistance{src, distances[src]})
for visiting.Len() > 0 {
current = visiting.PopOrdered()
if shouldSkip(current.distance, best, distances[current.id]) {
continue
}
for to, dist := range g.vertexArcs[current.id] {
if better(current.distance+dist, distances[to]) {
if bestVerticie[current.id] == to && to != dest {
return BestPath[int]{}, newErrLoop(current.id, to)
}
distances[to] = current.distance + dist
bestVerticie[to] = current.id
if to == dest {
visitedDest = true
best = distances[to]
continue // Do not push if dest
}
visiting.PushOrdered(currentDistance{to, distances[to]})
}
}
}
if !visitedDest {
return BestPath[int]{}, newErrNoPath(src, dest)
}
var path []int
for c := dest; c != src; c = bestVerticie[c] {
path = append(path, c)
}
path = append(path, src)
for i, j := 0, len(path)-1; i < j; i, j = i+1, j-1 {
path[i], path[j] = path[j], path[i]
}
return BestPath[int]{distances[dest], path}, nil
}
func (g Graph) evaluateAll(src, dest int, shortest bool, listOption int) (BestPaths[int], error) {
if err := g.vertexValid(src); err != nil {
return BestPaths[int]{}, err
}
if err := g.vertexValid(dest); err != nil {
return BestPaths[int]{}, err
}
var current currentDistance
visitedDest := false
var newDefault uint64
var best uint64
var better = func(a, b uint64) bool {
return a >= b
}
var shouldSkip = func(currentDistance, best, storedDistance uint64) bool {
return currentDistance < storedDistance
}
if shortest {
newDefault = uint64(math.MaxUint64) - 2
best = uint64(math.MaxUint64)
better = func(a, b uint64) bool {
return a <= b
}
shouldSkip = func(currentDistance, best, storedDistance uint64) bool {
return currentDistance > best || currentDistance > storedDistance
}
}
var visiting = g.getList(listOption)
distances := make([]uint64, len(g.vertexArcs))
bestVerticies := make([][]int, len(g.vertexArcs))
for i := range bestVerticies {
bestVerticies[i] = []int{-1}
distances[i] = newDefault
}
distances[src] = 0
visiting.PushOrdered(currentDistance{src, distances[src]})
for visiting.Len() > 0 {
current = visiting.PopOrdered()
if shouldSkip(current.distance, best, distances[current.id]) {
continue
}
for to, dist := range g.vertexArcs[current.id] {
if better(current.distance+dist, distances[to]) {
if bestVerticies[current.id][0] == to && to != dest {
return BestPaths[int]{}, newErrLoop(current.id, to)
}
if (current.distance + dist) == distances[to] {
bestVerticies[to] = append(bestVerticies[to], current.id)
} else {
distances[to] = current.distance + dist
bestVerticies[to] = []int{current.id}
if to == dest {
visitedDest = true
best = distances[to]
continue // Do not push if dest
}
visiting.PushOrdered(currentDistance{to, distances[to]})
}
}
}
}
if !visitedDest {
return BestPaths[int]{}, newErrNoPath(src, dest)
}
return BestPaths[int]{
Distance: distances[dest],
Paths: bestPaths(bestVerticies, src, dest),
}, nil
}
func bestPaths(bestVerticies [][]int, src, dest int) [][]int {
paths := visitPath(bestVerticies, src, dest, dest)
best := [][]int{}
//reverse order of paths
for indexPaths := range paths {
for i, j := 0, len(paths[indexPaths])-1; i < j; i, j = i+1, j-1 {
paths[indexPaths][i], paths[indexPaths][j] = paths[indexPaths][j], paths[indexPaths][i]
}
best = append(best, paths[indexPaths])
}
return best
}
// visitPath is a recursive function that will visit all the bestVerticies of a Vertex
func visitPath(bestVerticies [][]int, src, dest, currentVerticie int) [][]int {
if currentVerticie == src {
return [][]int{
{currentVerticie},
}
}
paths := [][]int{}
for _, vertex := range bestVerticies[currentVerticie] {
subPaths := visitPath(bestVerticies, src, dest, vertex)
for i := range subPaths {
//just note that we are walking in reverse order
subPathTilHere := append([]int{currentVerticie}, subPaths[i]...)
paths = append(paths, subPathTilHere)
}
}
return paths
}