In this example we generate renderings of an object (Suzanne) and then paste them onto random background images, randomizing position, orientation, material properties and lighting of the object. This is a naive way to generate data for training classification, object detection and segmentation tasks. It is easy to implement and use but usually leads to inferior results compared to renderings of objects in actual 3D scenes.
Execute in the Blender-Pipeline main directory:
blenderproc run examples/advanced/random_backgrounds/main.py examples/advanced/random_backgrounds/object.ply examples/advanced/random_backgrounds/output
examples/advanced/random_backgrounds/main.py
: path to the main python file to run.examples/advanced/random_backgrounds/object.ply
: path to the object file.examples/advanced/random_backgrounds/output
: path to the output directory.
The rendered data can be found in the output directory.
Render transparent background to overlay the rendering on a random background image in the next step.
# Enable transparency so the background becomes transparent
bproc.renderer.set_output_format(enable_transparency=True)
To paste the rendered images onto random backgrounds, we make use of the paste_images_on_backgrounds.py
script. To do so, execute:
python examples/advanced/random_backgrounds/paste_images_on_backgrounds.py --images examples/advanced/random_backgrounds/output/coco_data/images --backgrounds path/to/background/images --overwrite
You need to provide a directory with random background images. A common choice are images from the VOC challenge or
ImageNet. We use the --overwrite
flag to replace the rendered images with their version pasted on random backgrounds.