-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathob_trainer.py
685 lines (555 loc) · 30.1 KB
/
ob_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import time
import datetime
import utils
import numpy as np
from PIL import Image
import matplotlib as mpl
import matplotlib.cm as cm
from matplotlib import pyplot as plt
# from network.warp import disp_warp
from metrics.disparity_metric import d1_metric, thres_metric
from utils.init_trainer import InitOpts
from utils.loss import SegmentationLosses, DisparityLosses, get_smooth_loss
from network.utils import upsample
import scipy
import tensorflow as tf
from collections import OrderedDict
from utils.spade_util import tensor2label, tensor2im
from torch.nn.functional import adaptive_avg_pool2d
from scipy import linalg
try:
from StringIO import StringIO # Python 2.7
except ImportError:
from io import BytesIO # Python 3.x
## Trainer for the experiments
# Train and validate code for semantic segmentation and weather classification network
class Trainer(InitOpts):
def __init__(self, options):
super().__init__(options)
def train(self):
interval_loss, train_epoch_loss = 0.0, 0.0
print_cycle, data_cycle = 0.0, 0.0
step = 0
# empty the cache
with torch.cuda.device(self.device):
torch.cuda.empty_cache()
# switch to train mode
self.model.train()
num_img_tr = len(self.train_loader)
if self.opts.train_semantic:
self.criterion.step_counter = 0
# Learning rate summary
base_lr = self.optimizer.param_groups[0]['lr']
self.writer.add_scalar('base_lr', base_lr, self.cur_epochs)
self.evaluator.reset()
last_data_time = time.time()
for i, sample in enumerate(self.train_loader):
data_loader_time = time.time() - last_data_time
data_cycle += data_loader_time
self.num_iter += 1
model_start_time = time.time()
left = sample['left'].to(self.device, dtype=torch.float32)
if 'label' in sample.keys():
labels = sample['label'].to(self.device, dtype=torch.long)
if 'weather' in sample.keys():
gt_weather = sample['weather'].to(self.device)
if self.opts.train_semantic:
self.optimizer.zero_grad()
left_seg, weather_pred = self.model(left)
loss = self.criterion(left_seg, labels, sample)
loss_weather = F.cross_entropy(weather_pred, gt_weather.view(-1))
total_loss = (loss * self.opts.sem_weight + loss_weather * self.opts.weather_weight)
# total_loss = (loss_weather * self.opts.weather_weight)
interval_loss += total_loss
train_epoch_loss += total_loss
total_loss.backward()
self.optimizer.step()
one_cycle_time = time.time() - model_start_time
print_cycle += one_cycle_time
if self.num_iter % self.opts.print_freq == 0:
interval_loss = interval_loss / self.opts.print_freq
print("Epoch: [%3d/%3d] Itrs: [%5d/%5d] dataloader time : %4.2fs training time: %4.2fs time_per_img: %4.2fs Loss=%f" %
(self.cur_epochs, self.opts.epochs, i, num_img_tr, data_cycle, print_cycle,
print_cycle/self.opts.print_freq/self.opts.batch_size, interval_loss))
self.writer.add_scalar('train/total_loss_print_freq', interval_loss, self.num_iter)
interval_loss, print_cycle, data_cycle = 0.0, 0.0, 0.0
if self.num_iter % self.opts.summary_freq == 0:
summary_time_start = time.time()
self.writer.add_scalar('train/total_loss_summary_freq', total_loss.item(), self.num_iter)
self.writer.add_scalar('train/sem_loss_summary_freq', loss.item(), self.num_iter)
self.writer.add_scalar('train/weather_loss_summary_freq', loss_weather.item(), self.num_iter)
summary_time = time.time() - summary_time_start
print("summary_time : {}".format(summary_time))
last_data_time = time.time()
del total_loss, sample
if self.opts.use_SPADE:
time1 = time.time()
# run_generator_one_step
left_image = left / 255.
left_image -= 0.5
left_image /= 0.5
self.optimizer_G.zero_grad()
g_losses, generated = self.model.compute_generator_loss(labels, left_image)
g_loss = sum(g_losses.values()).mean()
g_loss.backward()
self.optimizer_G.step()
self.g_losses = g_losses
self.generated = generated
# run_discriminator_one_step
self.optimizer_D.zero_grad()
d_losses = self.model.compute_discriminator_loss(labels, left_image)
d_loss = sum(d_losses.values()).mean()
d_loss.backward()
self.optimizer_D.step()
self.d_losses = d_losses
time2 = time.time()
if i % self.opts.print_spade_freq == 0:
## print current training situations
losses = {**self.g_losses, **self.d_losses}
self.print_current_errors(self.cur_epochs, i, losses , (time2-time1)/self.opts.batch_size)
step = self.cur_epochs * len(self.train_loader) + i
self.plot_current_errors(losses, step)
## display current training results
visuals = OrderedDict([('input_label', labels.unsqueeze(1)),
('synthesized_image', generated),
('real_image', left_image)])
self.display_current_results(visuals, self.cur_epochs, step)
if self.opts.train_semantic:
train_epoch_loss = train_epoch_loss / num_img_tr
self.writer.add_scalar('train/total_loss_epoch', train_epoch_loss, self.cur_epochs)
def validate(self):
"""Do validation and return specified samples"""
print("validation...")
if self.opts.train_semantic:
self.evaluator.reset()
if self.opts.eval_FID:
dims = 2048
pred_real_fid_arr = np.empty((len(self.val_loader), dims))
pred_fake_fid_arr = np.empty((len(self.val_loader), dims))
start_fid_idx = 0
self.time_val = []
# empty the cache to infer in high res
with torch.cuda.device(self.device):
torch.cuda.empty_cache()
# switch to evaluate mode
self.model.eval()
valid_samples, scores, img_id = 0, 0, 0
num_val = len(self.val_loader)
with torch.no_grad():
start = time.time()
for i, sample in enumerate(self.val_loader):
data_time = time.time() - start
self.time_val_dataloader.append(data_time)
left = sample['left'].to(self.device, dtype=torch.float32)
if 'label' in sample.keys():
labels = sample['label']
if 'weather' in sample.keys():
gt_weather = sample['weather'].to(self.device)
if 'input_semantics' in sample.keys():
label_map = sample['input_semantics'].to(self.device)
if 'real_image' in sample.keys():
real_image = sample['real_image'].to(self.device)
valid_samples += 1
start_time = time.time()
if self.opts.train_semantic:
left_seg, pred_weather = self.model(left)
fwt = time.time() - start_time
preds = left_seg.detach().max(dim=1)[1].cpu().numpy()
targets = labels.numpy()
gt_weather = gt_weather.view(-1)
self.evaluator.add_batch_weather(gt_weather, pred_weather)
self.evaluator.add_batch(targets, preds, gt_weather.cpu().numpy())
# first batch stucked on some process.. --> time cost is wierd on i==0
if i != 0:
self.time_val.append(fwt)
if i % self.opts.val_print_freq == 0:
# check validation fps
print(
"[%d/%d] Model passed time (bath size=%d): %.3f (Mean time per img: %.3f), Dataloader time : %.3f" % (
i, num_val,
self.opts.val_batch_size, fwt,
sum(self.time_val) / len(self.time_val) / self.opts.val_batch_size, data_time))
if self.opts.use_SPADE:
z = None
if self.opts.use_vae:
real_image_ = real_image / 255.
real_image_ -= 0.5
real_image_ /= 0.5
mu, logvar = self.model.netE(real_image_)
z = self.reparameterize(mu, logvar)
if self.opts.use_SPADE_with_SEM:
# create one-hot label map from predicted semantic segmentations
pred_segs = left_seg.clone()
pred_segs = upsample(pred_segs, real_image.shape[2:])
label_map = pred_segs.max(dim=1)[1].unsqueeze(1)
bs, _, h, w = label_map.size()
nc = self.opts.label_nc + 1 if self.opts.contain_dontcare_label \
else self.opts.label_nc
input_label = torch.cuda.FloatTensor(bs, nc, h, w).zero_().to(self.device)
input_semantics = input_label.scatter_(1, label_map, 1.0)
fake_image = self.model.netG(input_semantics, z=z)
else:
label_map[label_map == 255] = self.opts.label_nc
label_map = label_map.unsqueeze(1)
bs, _, h, w = label_map.size()
nc = self.opts.label_nc + 1 if self.opts.contain_dontcare_label \
else self.opts.label_nc
input_label = torch.cuda.FloatTensor(bs, nc, h, w).zero_().to(self.device)
input_semantics = input_label.scatter_(1, label_map, 1.0)
fake_image = self.model.netG(input_semantics, z=z)
if self.opts.eval_FID:
fid_start = time.time()
# get activation
real_image_ = real_image / 255.
real_fid = self.model.FID(real_image_)[0]
fake_image_ = (fake_image + 1)/2.0
fake_fid = self.model.FID(fake_image_)[0]
if real_fid.size(2) != 1 or real_fid.size(3) != 1:
real_fid = adaptive_avg_pool2d(real_fid, output_size=(1, 1))
if fake_fid.size(2) != 1 or fake_fid.size(3) != 1:
fake_fid = adaptive_avg_pool2d(fake_fid, output_size=(1, 1))
real_fid = real_fid.squeeze(3).squeeze(2).cpu().numpy()
fake_fid = fake_fid.squeeze(3).squeeze(2).cpu().numpy()
pred_real_fid_arr[start_fid_idx:start_fid_idx + real_fid.shape[0]] = real_fid
pred_fake_fid_arr[start_fid_idx:start_fid_idx + fake_fid.shape[0]] = fake_fid
start_fid_idx = start_fid_idx + real_fid.shape[0]
fid_end = time.time()
if (i % 20 ==0):
print("{} th FID's are calculated : {} sec".format(i, fid_end-fid_start))
if self.opts.save_val_results and (i % self.opts.val_save_freq == 0):
# save all validation results images
if self.opts.train_semantic:
if self.opts.use_SPADE_with_SEM:
self.save_valid_img_in_results(left, targets, preds, i, fake_image=fake_image)
else:
self.save_valid_img_in_results(left, targets, preds, i)
elif self.opts.use_SPADE:
self.save_valid_img_SPADE_only(real_image, label_map.detach().cpu().numpy(), i, fake_image=fake_image)
img_id += 1
start = time.time()
del sample
# test validation performance of semantic segmentation
if self.opts.train_semantic:
score = self.evaluator.get_results()
save_filename = self.saver.save_file_return()
weather_acc = self.evaluator.get_weather_results(save_filename)
self.performance_test(score, weather_acc, save_filename)
# test validation performance of GAN
if self.opts.eval_FID:
# calculate FID score
fid_value = self.calculate_frechet_distance(pred_real_fid_arr, pred_fake_fid_arr)
print('FID: {}'.format(fid_value))
with open(self.saver.save_file_return(), 'a') as f:
f.write("FID : {}\n".format(fid_value))
if not self.opts.test_only:
if self.opts.train_semantic:
self.save_checkpoints_sem(score)
if self.opts.dataset != 'kitti_mix':
if score['Mean IoU'] > self.best_score: # save best model
self.best_score = score['Mean IoU']
self.best_score_epoch = self.cur_epochs
self.save_checkpoints_sem(score, is_best=True, best_type='score')
print('\nbest score epoch: {}, best score: {}'.format(self.best_score_epoch, self.best_score))
if self.opts.use_SPADE:
# save models
self.save_spade_weight('latest')
if self.opts.eval_FID and fid_value < self.best_fid_value:
self.best_fid_value = fid_value
self.best_fid_epoch = self.cur_epochs
self.save_spade_weight('best')
print('best FID values:{} at {} epoch'.format(self.best_fid_value, self.best_fid_epoch))
with open(self.saver.save_file_return(), 'a') as f:
f.write('best FID values:{} at {} epoch \n'.format(self.best_fid_value, self.best_fid_epoch))
def test(self):
self.validate()
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps.mul(std) + mu
def save_checkpoints(self, epe, score, is_best=False, best_type=None):
if self.n_gpus > 1:
model_state = self.model.module.state_dict()
else:
model_state = self.model.state_dict()
self.saver.save_checkpoint({
'epoch': self.cur_epochs,
"num_iter": self.num_iter,
'model_state': model_state,
'optimizer_state': self.optimizer.state_dict(),
'epe': epe,
'score': score,
'best_score': self.best_score,
'best_epe': self.best_epe,
'best_score_epoch': self.best_score_epoch,
'best_epe_epoch': self.best_epe_epoch
}, is_best, best_type)
def save_checkpoints_sem(self, score, is_best=False, best_type=None):
if self.n_gpus > 1:
model_state = self.model.module.state_dict()
else:
model_state = self.model.state_dict()
self.saver.save_checkpoint({
'epoch': self.cur_epochs,
"num_iter": self.num_iter,
'model_state': model_state,
'optimizer_state': self.optimizer.state_dict(),
'score': score,
'best_score': self.best_score,
'best_score_epoch': self.best_score_epoch,
}, is_best, best_type)
def save_spade_weight(self, epoch):
self.saver.save_spade_checkpoint(self.model.netG, 'G', epoch)
self.saver.save_spade_checkpoint(self.model.netD, 'D', epoch)
if self.opts.use_vae:
self.saver.save_spade_checkpoint(self.model.netE, 'E', epoch)
def performance_check_train(self, disp_loss, total_loss, pred_disp, gt_disp, mask, score):
if self.opts.train_semantic and self.opts.dataset != 'kitti_mix':
self.writer.add_scalar('train/mIoU', score["Mean IoU"], self.num_iter)
self.writer.add_scalar('train/OverallAcc', score["Overall Acc"], self.num_iter)
self.writer.add_scalar('train/MeanAcc', score["Mean Acc"], self.num_iter)
self.writer.add_scalar('train/fwIoU', score["FreqW Acc"], self.num_iter)
if self.opts.train_disparity:
# pred_disp = pred_disp.squeeze(1)
epe = F.l1_loss(gt_disp[mask], pred_disp[mask], reduction='mean')
self.writer.add_scalar('train/epe', epe.item(), self.num_iter)
self.writer.add_scalar('train/disp_loss', disp_loss.item(), self.num_iter)
self.writer.add_scalar('train/total_loss', total_loss.item(), self.num_iter)
d1 = d1_metric(pred_disp, gt_disp, mask)
self.writer.add_scalar('train/d1', d1.item(), self.num_iter)
thres1 = thres_metric(pred_disp, gt_disp, mask, 1.0)
thres2 = thres_metric(pred_disp, gt_disp, mask, 2.0)
thres3 = thres_metric(pred_disp, gt_disp, mask, 3.0)
self.writer.add_scalar('train/thres1', thres1.item(), self.num_iter)
self.writer.add_scalar('train/thres2', thres2.item(), self.num_iter)
self.writer.add_scalar('train/thres3', thres3.item(), self.num_iter)
def performance_test(self, val_score, weather_acc, save_filename):
print('Validation:')
print('[Epoch: %d]' % (self.cur_epochs))
if self.opts.train_semantic and self.opts.dataset != 'kitti_mix':
Acc = self.evaluator.Pixel_Accuracy()
Acc_class = self.evaluator.Pixel_Accuracy_Class()
mIoU = self.evaluator.Mean_Intersection_over_Union(save_filename)
FWIoU = self.evaluator.Frequency_Weighted_Intersection_over_Union()
weather_mIoU = self.evaluator.Mean_Intersection_over_Union_each_weather(save_filename)
if not self.opts.test_only:
self.writer.add_scalar('val/mIoU', mIoU, self.cur_epochs)
self.writer.add_scalar('val/Acc', Acc, self.cur_epochs)
self.writer.add_scalar('val/Acc_class', Acc_class, self.cur_epochs)
self.writer.add_scalar('val/fwIoU', FWIoU, self.cur_epochs)
self.writer.add_scalar('val/Acc_weather', weather_acc, self.cur_epochs)
for key, value in self.val_dst.weather_dict.items():
self.writer.add_scalar('val/mIoU_' + key, weather_mIoU[str(value)], self.cur_epochs)
print(self.evaluator.to_str(val_score))
else:
mIoU, Acc, Acc_class, FWIoU = 0, 0, 0, 0
self.saver.save_val_results_semantic(self.cur_epochs, mIoU, Acc)
print("Acc:{}, Acc_class:{}, mIoU:{}, fwIoU: {}, // weather_acc:{}".format(Acc, Acc_class, mIoU, FWIoU, weather_acc))
def make_directory(self, root, folders):
if not os.path.exists(os.path.join(root, folders)):
os.mkdir(os.path.join(root, folders))
def save_valid_img_in_results(self, left, targets, preds, img_id, fake_image=None):
save_start = time.time()
if not os.path.exists(os.path.join(self.saver.experiment_dir, 'results')):
os.mkdir(os.path.join(self.saver.experiment_dir, 'results'))
root_dir = os.path.join(self.saver.experiment_dir, 'results')
if self.opts.save_each_results:
self.make_directory(root_dir, 'left_image')
self.make_directory(root_dir, 'gt_sem')
self.make_directory(root_dir, 'pred_sem')
self.make_directory(root_dir, 'overlay')
if fake_image is not None:
self.make_directory(root_dir, 'fake_image')
else:
self.make_directory(root_dir, 'overall')
# for i in range(len(left)):
i = 0
image = left[i].detach().cpu().numpy()
# image = (self.denorm(image) * 255).transpose(1, 2, 0).astype(np.uint8)
image = ((image - np.min(image)) / (np.max(image) - np.min(image)) * 255).transpose(1, 2, 0).astype(np.uint8)
image_ = image.copy()
image_ = scipy.misc.imresize(image_, (512, 1024))
image = Image.fromarray(image)
if self.opts.dataset == 'kitti_2015':
image = image.crop((0, 8, 1242, 8 + 375))
target = targets[i]
target = self.val_loader.dataset.decode_target(target).astype(np.uint8)
target_ = target.copy()
target_ = scipy.misc.imresize(target_, (512, 1024))
target = Image.fromarray(target)
if self.opts.dataset == 'kitti_2015':
target = target.crop((0, 8, 1242, 8 + 375))
pred = preds[i]
pred = self.val_loader.dataset.decode_target(pred).astype(np.uint8)
pred_ = pred.copy()
pred_ = scipy.misc.imresize(pred_, (512, 1024))
pred = Image.fromarray(pred)
if self.opts.dataset == 'kitti_2015':
pred = pred.crop((0, 8, 1242, 8 + 375))
overlay = Image.blend(image, pred, alpha=0.7)
if fake_image is not None:
generated = fake_image[i].detach().cpu().numpy()
# generated = (np.transpose(generated, (1, 2, 0)) * 255.0).astype(np.uint8)
generated = ((np.transpose(generated, (1, 2, 0)) + 1) / 2.0 * 255.0).astype(np.uint8)
generated_ = generated.copy()
generated = Image.fromarray(generated)
if self.opts.save_each_results:
image.save(os.path.join(self.saver.experiment_dir, 'results', 'left_image', '%d_left_image.png' % img_id))
target.save(
os.path.join(self.saver.experiment_dir, 'results', 'gt_sem', '%d_gt_sem.png' % img_id))
pred.save(os.path.join(self.saver.experiment_dir, 'results', 'pred_sem', '%d_pred_sem.png' % img_id))
overlay.save(os.path.join(self.saver.experiment_dir, 'results', 'overlay', '%d_overlay.png' % img_id))
if fake_image is not None:
generated.save(os.path.join(self.saver.experiment_dir, 'results', 'fake_image', '%d_fake_image.png' % img_id))
else:
overall_list = [image_, target_, pred_]
if fake_image is not None:
overall_list += [generated_]
store_img = np.concatenate([i.astype(np.uint8) for i in overall_list], axis=0)
store_img = Image.fromarray(store_img)
store_img.thumbnail((720, 720))
store_img.save(os.path.join(self.saver.experiment_dir, 'results', 'overall', '%d_overall.png' % img_id))
save_end = time.time()
print(" {} --- Time for saving images:{}".format(img_id, save_end - save_start))
def save_valid_img_SPADE_only(self, left, targets, img_id, fake_image=None):
save_start = time.time()
if not os.path.exists(os.path.join(self.saver.experiment_dir, 'results')):
os.mkdir(os.path.join(self.saver.experiment_dir, 'results'))
root_dir = os.path.join(self.saver.experiment_dir, 'results')
self.make_directory(root_dir, 'real_image')
self.make_directory(root_dir, 'gt_sem')
self.make_directory(root_dir, 'fake_image')
# for i in range(len(left)):
i = 0
image = left[i].detach().cpu().numpy()
# image = (self.denorm(image) * 255).transpose(1, 2, 0).astype(np.uint8)
# image = ((image - np.min(image)) / (np.max(image) - np.min(image)) * 255).transpose(1, 2, 0).astype(np.uint8)
# image = ((np.transpose(image, (1, 2, 0)) + 1) / 2.0 * 255.0).astype(np.uint8)
image = (np.transpose(image, (1, 2, 0))).astype(np.uint8)
image = Image.fromarray(image)
target = targets[i]
target = self.val_loader.dataset.decode_target(target.squeeze(0)).astype(np.uint8)
target = Image.fromarray(target)
generated = fake_image[i].detach().cpu().numpy()
# generated = (np.transpose(generated, (1, 2, 0)) * 255.0).astype(np.uint8)
generated = ((np.transpose(generated, (1, 2, 0)) + 1) / 2.0 * 255.0).astype(np.uint8)
generated = Image.fromarray(generated)
image.save(os.path.join(self.saver.experiment_dir, 'results', 'real_image', '%d.png' % img_id))
target.save(
os.path.join(self.saver.experiment_dir, 'results', 'gt_sem', '%d.png' % img_id))
generated.save(os.path.join(self.saver.experiment_dir, 'results', 'fake_image', '%d.png' % img_id))
save_end = time.time()
print(" {} --- Time for saving images:{}".format(img_id, save_end - save_start))
def calculate_estimate(self, epoch, iter):
num_img_tr = len(self.train_loader)
num_img_val = len(self.val_loader)
estimate = int((self.data_time_t.avg + self.batch_time_t.avg) * \
(num_img_tr * self.opts.epochs - (
iter + 1 + epoch * num_img_tr))) + \
int(self.batch_time_e.avg * num_img_val * (
self.opts.epochs - (epoch)))
return str(datetime.timedelta(seconds=estimate))
def calculate_frechet_distance(self, pred_real_fid_arr, pred_fake_fid_arr, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.mean(pred_real_fid_arr, axis=0)
sigma1 = np.cov(pred_real_fid_arr, rowvar=False)
mu2 = np.mean(pred_fake_fid_arr, axis=0)
sigma2 = np.cov(pred_fake_fid_arr, rowvar=False)
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1)
+ np.trace(sigma2) - 2 * tr_covmean)
# errors: same format as |errors| of plotCurrentErrors
def print_current_errors(self, epoch, i, errors, t):
save_filename = self.saver.save_file_return()
message = '(epoch: %d, iters: %d, time: %.3f) ' % (epoch, i, t)
for k, v in errors.items():
# print(v)
# if v != 0:
v = v.mean().float()
message += '%s: %.3f ' % (k, v)
print(message)
with open(save_filename, "a") as log_file:
log_file.write('%s\n' % message)
# errors: dictionary of error labels and values
def plot_current_errors(self, errors, step):
for tag, value in errors.items():
value = value.mean().float()
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
self.writer.add_summary(summary, step)
# self.writer.add_scalar(tag, value, step)
# |visuals|: dictionary of images to display or save
def display_current_results(self, visuals, epoch, step):
## convert tensors to numpy arrays
visuals = self.convert_visuals_to_numpy(visuals)
# show images in tensorboard output
img_summaries = []
for label, image_numpy in visuals.items():
# Write the image to a string
try:
s = StringIO()
except:
s = BytesIO()
if len(image_numpy.shape) >= 4:
image_numpy = image_numpy[0]
scipy.misc.toimage(image_numpy).save(s, format="jpeg")
# Create an Image object
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(), height=image_numpy.shape[0],
width=image_numpy.shape[1])
# Create a Summary value
img_summaries.append(tf.Summary.Value(tag=label, image=img_sum))
# Create and write Summary
summary = tf.Summary(value=img_summaries)
self.writer.add_summary(summary, step)
def convert_visuals_to_numpy(self, visuals):
for key, t in visuals.items():
tile = self.opts.batch_size > 8
if 'input_label' == key:
t = tensor2label(t, self.opts.label_nc + 2, tile=tile)
elif 'pred_sem' == key:
t = tensor2label(t, self.opts.label_nc + 2, tile=tile)
else:
t = tensor2im(t, tile=tile)
visuals[key] = t
return visuals