-
Notifications
You must be signed in to change notification settings - Fork 91
/
lsda_detector.py
568 lines (445 loc) · 22 KB
/
lsda_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
'''
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-0706
# description: Class for the LSDADetector
Functions in the Class are summarized as:
1. __init__: Initialization
2. build_backbone: Backbone-building
3. build_loss: Loss-function-building
4. features: Feature-extraction
5. classifier: Classification
6. get_losses: Loss-computation
7. get_train_metrics: Training-metrics-computation
8. get_test_metrics: Testing-metrics-computation
9. forward: Forward-propagation
Reference:
@article{yan2023transcending,
title={Transcending forgery specificity with latent space augmentation for generalizable deepfake detection},
author={Yan, Zhiyuan and Luo, Yuhao and Lyu, Siwei and Liu, Qingshan and Wu, Baoyuan},
journal={arXiv preprint arXiv:2311.11278},
year={2023}
}
'''
import os
import datetime
import numpy as np
from collections import defaultdict
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn import DataParallel
from torch.utils.tensorboard import SummaryWriter
import cv2
from collections import defaultdict
from efficientnet_pytorch import EfficientNet
from networks.iresnet import iresnet100
from networks.xception import Xception
from detectors import DETECTOR
from sklearn import metrics
from metrics.base_metrics_class import calculate_metrics_for_train
from .base_detector import AbstractDetector
from .base_detector import AbstractDetector
from detectors import DETECTOR
from networks import BACKBONE
from loss import LOSSFUNC
device = "cuda" if torch.cuda.is_available() else "cpu"
@DETECTOR.register_module(module_name='lsda')
class LSDADetector(AbstractDetector):
def __init__(self, config):
super().__init__()
# model
forgery_num = 4
self.model = generator(
num_classes=forgery_num+1, encoder_feat_dim=512,
teacher=config['teacher'], student=config['student'],
real_encoder=config['real_encoder'],
).to(device)
# loss
self.cls_criterion = nn.CrossEntropyLoss()
self.gan_loss_fn = nn.BCELoss()
self.prob, self.label = [], []
self.correct, self.total = 0, 0
def build_backbone(self, config):
pass # FIXME: will be added into this function
def build_loss(self, config):
pass # FIXME: will be added into this function
def features(self, data_dict: dict) -> torch.tensor:
pass # FIXME: will be added into this function
def classifier(self, features: torch.tensor) -> torch.tensor:
pass # FIXME: will be added into this function
def get_losses(self, data_dict: dict, predictions: dict) -> dict:
try:
deepfake_loss, total_loss_distillation, domain_loss, loss_real = predictions['pred_loss']
loss = \
1 * domain_loss + \
0.5 * deepfake_loss + \
1 * total_loss_distillation + \
1 * loss_real
loss_dict = {'overall': loss, 'domain': domain_loss, 'deepfake': deepfake_loss, 'distillation': total_loss_distillation, 'real_loss': loss_real}
except:
# test time
loss = 0
loss_dict = {'overall': loss}
return loss_dict
def get_train_metrics(self, data_dict: dict, pred_dict: dict) -> dict:
label = data_dict['label']
label = torch.where(label == 0, 0, 1).reshape(-1,1)
prob = pred_dict['prob'].reshape(-1,1)
# compute metrics for batch data
auc, eer, acc, ap = calculate_metrics_for_train(label.detach(), prob.detach())
metric_batch_dict = {'acc': acc, 'auc': auc, 'eer': eer, 'ap': ap}
return metric_batch_dict
def forward(self, data_dict: dict, inference=False) -> dict:
# 1. Forward pass
# pred, data_dict['label'], feat =
model_output = self.model(data_dict['image'], data_dict['label'], inference=inference)
if inference:
pred = model_output
prob = torch.softmax(pred, dim=1)[:, 1]
pred_dict = {'cls': pred, 'prob': prob, 'feat': prob}
else:
pred, deepfake_loss, total_loss_distillation, domain_loss, loss_real, student_feature = model_output
loss = (deepfake_loss, total_loss_distillation, domain_loss, loss_real)
prob = torch.softmax(pred, dim=1)[:, 1]
pred_dict = {'cls': pred, 'prob': prob, 'feat': student_feature, 'pred_loss': loss}
if inference:
self.prob.append(
pred_dict['prob']
.detach()
.squeeze()
.cpu()
.numpy()
)
self.label.append(
data_dict['label']
.detach()
.squeeze()
.cpu()
.numpy()
)
# deal with acc
_, prediction_class = torch.max(pred, 1)
correct = (prediction_class == data_dict['label']).sum().item()
self.correct += correct
self.total += data_dict['label'].size(0)
return pred_dict
class efficientnet(nn.Module):
def __init__(self, pretrain='efficientnet-b4', sbi=None):
super(efficientnet, self).__init__()
self.model = EfficientNet.from_pretrained(pretrain,weights_path='./training/pretrained/efficientnet-b4-6ed6700e.pth')
if pretrain == 'efficientnet-b4':
self.conv = nn.Conv2d(1792, 512, 1)
elif pretrain == 'efficientnet-b1':
self.conv = nn.Conv2d(1280, 512, 1)
elif pretrain == 'efficientnet-b3':
self.conv = nn.Conv2d(1536, 512, 1)
elif pretrain == 'efficientnet-b5':
self.conv = nn.Conv2d(2048, 512, 1)
elif pretrain == 'efficientnet-b6':
self.conv = nn.Conv2d(2304, 512, 1)
else:
raise ValueError('pretrain is not supported')
# self.channel_adjust_conv = nn.Conv2d(2424, 512, 1)
def features(self, x):
x = self.model.extract_features(x)
x = self.conv(x)
return x
def forward(self, x):
x = self.model.extract_features(x)
x = self.conv(x)
return x
class MLP(nn.Module):
def __init__(self, in_f, hidden_dim, out_f):
super(MLP, self).__init__()
self.pool = nn.AdaptiveAvgPool2d(1)
self.mlp = nn.Sequential(nn.Linear(in_f, hidden_dim),
nn.LeakyReLU(inplace=True),
nn.Linear(hidden_dim, hidden_dim),
nn.LeakyReLU(inplace=True),
nn.Linear(hidden_dim, out_f),)
def forward(self, x):
x = self.pool(x)
x = self.mlp(x)
return x
class Conv2d1x1(nn.Module):
def __init__(self, in_f, hidden_dim, out_f):
super(Conv2d1x1, self).__init__()
self.conv2d = nn.Sequential(nn.Conv2d(in_f, hidden_dim, 1, 1),
nn.LeakyReLU(inplace=True),
nn.Conv2d(hidden_dim, hidden_dim, 1, 1),
nn.LeakyReLU(inplace=True),
nn.Conv2d(hidden_dim, out_f, 1, 1),)
def forward(self, x):
x = self.conv2d(x)
return x
class Head(nn.Module):
def __init__(self, in_f, hidden_dim, out_f):
super(Head, self).__init__()
self.do = nn.Dropout(0.2)
self.pool = nn.AdaptiveAvgPool2d(1)
self.mlp = nn.Sequential(nn.Linear(in_f, hidden_dim),
nn.LeakyReLU(inplace=True),
nn.Linear(hidden_dim, out_f),)
def forward(self, x):
bs = x.size()[0]
x_feat = self.pool(x).view(bs, -1)
x = self.mlp(x_feat)
x = self.do(x)
return x, x_feat
def set_requires_grad(model, val):
for p in model.parameters():
p.requires_grad = val
class generator(nn.Module):
def __init__(self, num_classes,
encoder_feat_dim,
num_domains=5,
teacher='efficientnetb4',
student='efficientnetb4',
real_encoder=None,
) -> None:
super(generator, self).__init__()
self.num_domains = num_domains
# init variable
self.num_classes = num_classes
self.encoder_feat_dim = encoder_feat_dim
self.half_fingerprint_dim = encoder_feat_dim//2
# basic function
self.lr = nn.LeakyReLU(inplace=True)
self.do = nn.Dropout(0.2)
self.pool = nn.AdaptiveAvgPool2d(1)
self.count = 0
# 4个fake,用modulelist
if teacher == 'xception':
self.encoders_f = nn.ModuleList([self.init_xcep() for _ in range(self.num_domains-1)])
elif teacher == 'efficientnetb4':
self.encoders_f = nn.ModuleList([self.init_efficient() for _ in range(self.num_domains-1)])
if real_encoder is None:
self.encoder_c = iresnet100(pretrained=False, fp16=False)
elif real_encoder == 'efficientnetb4':
print('real encoder: efficient')
self.encoder_c = self.init_efficient()
if student == 'xception':
self.student_encoder = self.init_xcep()
elif student == 'efficientnetb4':
self.student_encoder = self.init_efficient()
self.fc_weights = nn.Sequential(
nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=1, stride=1, padding=0),
nn.LeakyReLU(inplace=True),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(inplace=True),
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(inplace=True),
)
self.mlp = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(self.half_fingerprint_dim*2, self.half_fingerprint_dim),
nn.LeakyReLU(inplace=True),
nn.Linear(self.half_fingerprint_dim, num_domains),
)
self.binary_classifier = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(self.encoder_feat_dim, 512),
nn.LeakyReLU(inplace=True),
nn.Linear(512, 2),
)
self.cls_criterion = nn.CrossEntropyLoss()
def init_xcep(self, pretrained_path='pretrained/xception-b5690688.pth'):
xcep = Xception(self.num_classes)
# load pre-trained Xception
state_dict = torch.load(pretrained_path)
for name, weights in state_dict.items():
if 'pointwise' in name:
state_dict[name] = weights.unsqueeze(-1).unsqueeze(-1)
state_dict = {k:v for k, v in state_dict.items() if 'fc' not in k}
xcep.load_state_dict(state_dict, False)
return xcep
def init_efficient(self):
model = efficientnet(pretrain='efficientnet-b4')
return model
# only for grad cam
def features(self, cat_data):
# Binary classification detector, a student model, to be distilled (real/fake)
student_feature = self.student_encoder.features(cat_data)
return student_feature
# only for grad cam
def classifier(self, fea):
out = self.binary_classifier(fea)
return out, None
def real_fake_feature_extract(self, cat_data):
number_of_groups, video_per_group, c, h, w = cat_data.shape
# Use defaultdict to store tensors for each domain
domain_f_chunks = defaultdict(list)
domain_c_chunks = defaultdict(list)
for domain_id in range(video_per_group):
# Get the data for the current domain across all groups
domain_data_tensor = cat_data[:, domain_id]
# Compute self-generation loss
c_chunk = self.encoder_c(domain_data_tensor)
if domain_id>0: # 是哪个domain的。就用哪个encoder. 5 in total
f_chunk = self.encoders_f[domain_id-1].features(domain_data_tensor)
# Store the chunks in the defaultdict
domain_f_chunks[domain_id-1] = f_chunk
domain_c_chunks[domain_id] = c_chunk
# Reconstruct the tensors based on the label order
all_f_outputs = torch.stack(list(domain_f_chunks.values())).transpose(1, 0)
all_c_outputs = torch.stack(list(domain_c_chunks.values())).transpose(1, 0)
return all_f_outputs, all_c_outputs
def augment_domains(self, groups_feature_maps):
# Helper Functions
def hard_example_interpolation(z_i, hard_example, lambda_1):
return z_i + lambda_1 * (hard_example - z_i)
def hard_example_extrapolation(z_i, mean_latent, lambda_2):
return z_i + lambda_2 * (z_i - mean_latent)
def add_gaussian_noise(z_i, sigma, lambda_3):
epsilon = torch.randn_like(z_i) * sigma
return z_i + lambda_3 * epsilon
def difference_transform(z_i, z_j, z_k, lambda_4):
return z_i + lambda_4 * (z_j - z_k)
def distance(z_i, z_j):
return torch.norm(z_i - z_j)
domain_number = len(groups_feature_maps[0])
# Calculate the mean latent vector for each domain across all groups; why 8*8
domain_means = []
for domain_idx in range(domain_number):
all_samples_in_domain = torch.cat([group[domain_idx] for group in groups_feature_maps], dim=0)
domain_mean = torch.mean(all_samples_in_domain, dim=0)
domain_means.append(domain_mean)
# Identify the hard example for each domain across all groups (the farest one)
hard_examples = []
for domain_idx in range(domain_number):
all_samples_in_domain = torch.cat([group[domain_idx] for group in groups_feature_maps], dim=0)
distances = torch.tensor([distance(z, domain_means[domain_idx]) for z in all_samples_in_domain])
hard_example = all_samples_in_domain[torch.argmax(distances)]
hard_examples.append(hard_example)
augmented_groups = []
# modify each feature maps
for group_feature_maps in groups_feature_maps:
augmented_domains = []
for domain_idx, domain_feature_maps in enumerate(group_feature_maps):
# Choose a random augmentation
augmentations = [
lambda z: hard_example_interpolation(z, hard_examples[domain_idx], random.random()),
lambda z: hard_example_extrapolation(z, domain_means[domain_idx], random.random()),
lambda z: add_gaussian_noise(z, random.random(), random.random()),
lambda z: difference_transform(z, domain_feature_maps[0], domain_feature_maps[1], random.random())
]
chosen_aug = random.choice(augmentations)
augmented = torch.stack([chosen_aug(z) for z in domain_feature_maps])
augmented_domains.append(augmented)
augmented_domains = torch.stack(augmented_domains)
augmented_groups.append(augmented_domains)
return torch.stack(augmented_groups)
def mixup_in_latent_space(self, data):
# data shape: [batchsize, num_domains, 3, 256, 256]
bs, num_domains, _, _, _ = data.shape
# Initialize an empty tensor for mixed data
mixed_data = torch.zeros_like(data)
# For each sample in the batch
for i in range(bs):
# Step 1: Generate a shuffled index list for the domains
shuffled_idxs = torch.randperm(num_domains)
# Step 2: Choose random alpha between 0.5 and 2, then sample lambda from beta distribution
alpha = torch.rand(1) * 1.5 + 0.5 # random alpha between 0.5 and 2
lambda_ = torch.distributions.beta.Beta(alpha, alpha).sample().to(data.device)
# Step 3: Perform mixup using the shuffled indices
mixed_data[i] = lambda_ * data[i] + (1 - lambda_) * data[i, shuffled_idxs]
return mixed_data
def rotate_trans(self, fake_fs,
rotation_degree_range=(-30, 30)):
# Convert degrees to radians
rotation_degree = torch.rand(1).to(fake_fs.device) * (rotation_degree_range[1] - rotation_degree_range[0]) + rotation_degree_range[0]
rotation_radians = rotation_degree * (3.141592653589793 / 180.0)
# Create an identity affine transformation (3x4) with the rotation in the top-left 2x2 corner
identity_affine = torch.tensor([
[1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0]
], dtype=torch.float32).to(fake_fs.device)
# Fill the rotation into the top-left 2x2
identity_affine[0, 0:2] = torch.tensor([torch.cos(rotation_radians), -torch.sin(rotation_radians)], dtype=torch.float32).to(fake_fs.device)
identity_affine[1, 0:2] = torch.tensor([torch.sin(rotation_radians), torch.cos(rotation_radians)], dtype=torch.float32).to(fake_fs.device)
# Expand the affine transformation for the batch
theta = identity_affine.unsqueeze(0).repeat(fake_fs.size(0), 1, 1)
grid = F.affine_grid(theta, fake_fs.size())
fake_fs = F.grid_sample(fake_fs, grid)
return fake_fs
@staticmethod
def cosine_similarity_loss(x, y, dim=1, eps=1e-8):
x_norm = x / (x.norm(dim=dim, keepdim=True) + eps)
y_norm = y / (y.norm(dim=dim, keepdim=True) + eps)
cos_sim = (x_norm * y_norm).sum(dim=dim)
return 1 - cos_sim
@staticmethod
def js_loss(inputs, targets):
"""
Computes the Jensen-Shannon divergence loss.
"""
# Compute the probability distributions
inputs_prob = F.softmax(inputs, dim=1)
targets_prob = F.softmax(targets, dim=1)
# Compute the average probability distribution
avg_prob = (inputs_prob + targets_prob) / 2
# Compute the KL divergence component for each distribution
kl_div_loss = nn.KLDivLoss(reduction='batchmean')
kl_inputs = kl_div_loss(inputs_prob.log(), avg_prob)
kl_targets = kl_div_loss(targets_prob.log(), avg_prob)
# Compute the Jensen-Shannon divergence
loss = 0.5 * (kl_inputs + kl_targets)
return loss
def forward(self, cat_data, label=None, inference=False):
if inference:
# Use the common encoder for inference/testing
student_feature = self.student_encoder.features(cat_data)
out_common = self.binary_classifier(student_feature)
return out_common
# Obtain data
number_of_groups, video_per_group, c, h, w = cat_data.shape
# Extract the real and fake features separately ; 每一个都是一个单独的effnb4提取出来的
f_outputs, c_outputs = self.real_fake_feature_extract(cat_data)
# p = random.random()
# if p > 0.5:
# f_outputs = self.rotate_trans(f_outputs)
# Perform augmentation in the latent space / f_out 只包含 fake
f_outputs_aug = self.augment_domains(f_outputs)
# Mixup in the latent space for cross-domain
mix_f_outputs = self.mixup_in_latent_space(f_outputs)
aug_fake = torch.cat([f_outputs_aug, mix_f_outputs], dim=2).view(-1, self.encoder_feat_dim*2, 8, 8)
fc = self.fc_weights(aug_fake).view(number_of_groups, video_per_group-1, self.encoder_feat_dim, 8, 8)
# real constrain (optional, for the aim of learning real-features (e.g., ID) better)
real = c_outputs[:, 0, :, :, :]
df = c_outputs[:, 1, :, :, :]
f2f = c_outputs[:, 2, :, :, :]
fs = c_outputs[:, 3, :, :, :]
nt = c_outputs[:, 4, :, :, :]
loss_real = self.cosine_similarity_loss(real, nt).sum() \
+ self.cosine_similarity_loss(real, f2f).sum() \
- self.cosine_similarity_loss(real, fs).sum() \
- self.cosine_similarity_loss(real, df).sum()
# loss_real = self.js_loss(real, nt) + self.js_loss(real, f2f) - self.js_loss(real, fs) - self.js_loss(real, df)
loss_real = loss_real.mean()
# Obtain reshape label
label = label.contiguous().view(-1)
# Obtain the binary label
binary_label = torch.where(label==0, 0, 1)
# Binary classification detector, a student model, to be distilled (real/fake)
student_feature = self.student_encoder.features(cat_data.view(-1, c, h, w))
binary_out = self.binary_classifier(student_feature)
deepfake_loss = F.cross_entropy(binary_out, binary_label)
# Distillation for the student encoder
real_mask = (label == 0)
fake_mask = (label > 0)
distillation_real_feature = student_feature[real_mask]
distillation_fake_feature = student_feature[fake_mask].reshape((number_of_groups, video_per_group-1, self.encoder_feat_dim, 8, 8))
loss_distillation_real = F.mse_loss(distillation_real_feature, c_outputs.reshape(((-1, self.encoder_feat_dim, 8, 8)))[real_mask])
loss_distillation_fake = F.mse_loss(distillation_fake_feature, fc)
total_loss_distillation = loss_distillation_real + loss_distillation_fake
# Domain classification loss for all domains
all_domain_feat = torch.cat([c_outputs[:, 0, :, :, :].unsqueeze(1), f_outputs], dim=1).reshape((number_of_groups*video_per_group, self.encoder_feat_dim, 8, 8))
out_spe = self.mlp(all_domain_feat)
domain_loss = self.cls_criterion(out_spe, label)
return binary_out, deepfake_loss, total_loss_distillation, domain_loss, loss_real, student_feature