-
Notifications
You must be signed in to change notification settings - Fork 91
/
pcl_xception_detector.py
282 lines (242 loc) · 10.7 KB
/
pcl_xception_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
'''
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-0706
# description: Class for the PCLDetector
Functions in the Class are summarized as:
1. __init__: Initialization
2. build_backbone: Backbone-building
3. build_loss: Loss-function-building
4. features: Feature-extraction
5. classifier: Classification
6. get_losses: Loss-computation
7. get_train_metrics: Training-metrics-computation
8. get_test_metrics: Testing-metrics-computation
9. forward: Forward-propagation
Reference:
@inproceedings{zhao2021learning,
title={Learning self-consistency for deepfake detection},
author={Zhao, Tianchen and Xu, Xiang and Xu, Mingze and Ding, Hui and Xiong, Yuanjun and Xia, Wei},
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
pages={15023--15033},
year={2021}
}
'''
import os
import datetime
import logging
import random
import numpy as np
import yaml
from sklearn import metrics
from typing import Union
from collections import defaultdict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn import DataParallel
from torch.utils.tensorboard import SummaryWriter
from dataset.I2G_dataset import I2GDataset
from metrics.base_metrics_class import calculate_metrics_for_train
from detectors.base_detector import AbstractDetector
from detectors import DETECTOR
from networks import BACKBONE
from loss import LOSSFUNC
import math
from torchvision import transforms
logger = logging.getLogger(__name__)
class Masks4D(object):
def __call__(self, masks):
first_w = True
first_h = True
first_c = True
for k, mask in enumerate(masks):
mask=mask.squeeze(0)
h, w = mask.shape
real_mask = torch.unsqueeze(torch.unsqueeze(torch.unsqueeze(mask, 0), 0), 0)
# fake_mask = torch.unsqueeze(torch.unsqueeze(1 - mask, 0), 0)
for i, mask_h in enumerate(mask):
for j, mask_w in enumerate(mask_h):
curr_mask = 1 - torch.abs(mask_w - real_mask)
if first_w:
total_mask_w = real_mask
first_w = False
else:
total_mask_w = torch.cat((total_mask_w, curr_mask), dim=2)
if first_h:
total_mask_h = total_mask_w
first_h = False
else:
total_mask_h = torch.cat((total_mask_h, total_mask_w), dim = 1)
first_w = True
if first_c:
total_mask_c = total_mask_h
first_c = False
else:
total_mask_c = torch.cat((total_mask_c, total_mask_h), dim = 0)
first_h = True
return total_mask_c
class NLBlockND(nn.Module):
def __init__(self, in_channels=256):
"""Implementation of Non-Local Block with 4 different pairwise functions but doesn't include subsampling trick
args:
in_channels: original channel size (1024 in the paper)
inter_channels: channel size inside the block if not specifed reduced to half (512 in the paper)
mode: supports Gaussian, Embedded Gaussian, Dot Product, and Concatenation
dimension: can be 1 (temporal), 2 (spatial), 3 (spatiotemporal)
bn_layer: whether to add batch norm
"""
super(NLBlockND, self).__init__()
self.in_channels = in_channels
# assign appropriate convolutional, max pool, and batch norm layers for different dimensions
# add BatchNorm layer after the last conv layer
self.sig = nn.Sigmoid()
# define theta and phi for all operations except gaussian 为什么会有俩?
self.theta = nn.Conv2d(in_channels=self.in_channels, out_channels=self.in_channels, kernel_size=1)
self.phi = nn.Conv2d(in_channels=self.in_channels, out_channels=self.in_channels, kernel_size=1)
def forward(self, x, return_nl_map=False):
"""
args
x: (N, C, T, H, W) for dimension=3; (N, C, H, W) for dimension 2; (N, C, T) for dimension 1
"""
batch_size = x.size(0)
# (N, C, THW)
# this reshaping and permutation is from the spacetime_nonlocal function in the original Caffe2 implementation
theta_x = self.theta(x).view(batch_size, self.in_channels, -1) #flatten operation
#phi_x = self.phi(x).view(batch_size, self.in_channels, -1)
phi_x = self.theta(x).view(batch_size, self.in_channels, -1)
theta_x = theta_x.permute(0, 2, 1)
#channel as vector
f = torch.matmul(theta_x, phi_x)
f_div_C = f / math.sqrt(self.in_channels)
# contiguous here just allocates contiguous chunk of memory
y = f_div_C.permute(0, 2, 1).contiguous()
sig_y = self.sig(y)
final_y = sig_y.view(batch_size, *x.size()[2:], *x.size()[2:])
if return_nl_map:
return final_y, sig_y
else:
return final_y
@DETECTOR.register_module(module_name='pcl_xception')
class PCLXceptionDetector(AbstractDetector):
def __init__(self, config):
super().__init__()
self.config = config
self.backbone = self.build_backbone(config)
self.loss_func = self.build_loss(config)
self.PCL = NLBlockND(in_channels=728)
self.Msk_PCL = transforms.Compose([Masks4D()])
self.mask_down_sampling = nn.UpsamplingBilinear2d(
scale_factor=16 / 256)
self.criterionBCE = nn.BCELoss()
def build_backbone(self, config):
backbone_class = BACKBONE[config['backbone_name']]
model_config = config['backbone_config']
backbone = backbone_class(model_config)
if config['pretrained'] != 'None':
# if donot load the pretrained weights, fail to get good results
state_dict = torch.load(config['pretrained'])
for name, weights in state_dict.items():
if 'pointwise' in name:
state_dict[name] = weights.unsqueeze(-1).unsqueeze(-1)
state_dict = {k:v for k, v in state_dict.items() if 'fc' not in k}
# backbone.classifier=classifier
backbone.load_state_dict(state_dict, False)
logger.info('Load pretrained model successfully!')
else:
logger.info('No pretrained model.')
return backbone
def build_loss(self, config):
# prepare the loss function
loss_class = LOSSFUNC[config['loss_func']]
if config['loss_func']=='center_loss':
loss_func = loss_class(num_classes=2, feat_dim=2048)
else:
loss_func = loss_class()
return loss_func
def features(self, data_dict: dict) -> torch.tensor:
return self.backbone.features(data_dict['image']) #32,3,256,256
def classifier(self, features: torch.tensor) -> torch.tensor:
return self.backbone.classifier(features)
def get_losses(self, data_dict: dict, pred_dict: dict) -> dict:
label = data_dict['label']
pred = pred_dict['cls']
if pred_dict['pcl_map'] is not None:
pcl_loss = self.criterionBCE(pred_dict['pcl_map'],pred_dict['pcl_gt_map'])
else:
pcl_loss = 0
det_loss = self.loss_func(pred, label)
loss = det_loss+ self.config['pcl_loss_weight'] * pcl_loss
loss_dict = {'overall': loss,'pcl_loss': pcl_loss, 'det_loss':det_loss}
return loss_dict
def get_train_metrics(self, data_dict: dict, pred_dict: dict) -> dict:
label = data_dict['label']
pred = pred_dict['cls']
# compute metrics for batch data
auc, eer, acc, ap = calculate_metrics_for_train(label.detach(), pred.detach())
metric_batch_dict = {'acc': acc, 'auc': auc, 'eer': eer, 'ap': ap}
return metric_batch_dict
def forward(self, data_dict: dict, inference=False) -> dict:
#print(data_dict['image'].device)
# get the features by backbone
features,x3 = self.features(data_dict)
if not inference:
pcl_map=self.PCL(x3)
pcl_gt_map=self.Msk_PCL(self.mask_down_sampling(data_dict['mask']))
else:
pcl_map,pcl_gt_map = None, None
# get the prediction by classifier
pred,x = self.classifier(features)
# get the probability of the pred
prob = torch.softmax(pred, dim=1)[:, 1]
# build the prediction dict for each output
pred_dict = {'cls': pred, 'prob': prob, 'feat': features, 'pcl_map':pcl_map, 'pcl_gt_map': pcl_gt_map}
return pred_dict
if __name__ == '__main__':
with open(r'H:\code\DeepfakeBench\training\config\detector\pcl_xception.yaml', 'r') as f:
config = yaml.safe_load(f)
with open('./training/config/train_config.yaml', 'r') as f:
config2 = yaml.safe_load(f)
config.update(config2)
if config['manualSeed'] is None:
config['manualSeed'] = random.randint(1, 10000)
random.seed(config['manualSeed'])
torch.manual_seed(config['manualSeed'])
if config['cuda']:
torch.cuda.manual_seed_all(config['manualSeed'])
detector=PCLXceptionDetector(config=config).cuda()
config['data_manner'] = 'lmdb'
config['dataset_json_folder'] = 'preprocessing/dataset_json_v3'
config['sample_size']=256
config['with_mask']=True
config['with_landmark']=True
config['use_data_augmentation']=True
train_set = I2GDataset(config=config, mode='train')
train_data_loader = \
torch.utils.data.DataLoader(
dataset=train_set,
batch_size=8,
shuffle=True,
num_workers=0,
collate_fn=train_set.collate_fn,
)
optimizer = optim.Adam(
params=detector.parameters(),
lr=config['optimizer']['adam']['lr'],
weight_decay=config['optimizer']['adam']['weight_decay'],
betas=(config['optimizer']['adam']['beta1'], config['optimizer']['adam']['beta2']),
eps=config['optimizer']['adam']['eps'],
amsgrad=config['optimizer']['adam']['amsgrad'],
)
from tqdm import tqdm
for iteration, batch in enumerate(tqdm(train_data_loader)):
print(iteration)
batch['image'],batch['label'],batch['mask']=batch['image'].cuda(),batch['label'].cuda(),batch['mask'].cuda()
predictions=detector(batch)
losses = detector.get_losses(batch, predictions)
optimizer.zero_grad()
losses['overall'].backward()
optimizer.step()
if iteration > 10:
break