-
Notifications
You must be signed in to change notification settings - Fork 91
/
rfm_detector.py
174 lines (142 loc) · 5.96 KB
/
rfm_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
'''
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-0706
# description: Class for the RFMDetector
Functions in the Class are summarized as:
1. __init__: Initialization
2. build_backbone: Backbone-building
3. build_loss: Loss-function-building
4. features: Feature-extraction
5. classifier: Classification
6. get_losses: Loss-computation
7. get_train_metrics: Training-metrics-computation
8. get_test_metrics: Testing-metrics-computation
9. forward: Forward-propagation
Reference:
@inproceedings{wang2021representative,
title={Representative forgery mining for fake face detection},
author={Wang, Chengrui and Deng, Weihong},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
pages={14923--14932},
year={2021}
}
'''
import os
import datetime
import logging
import numpy as np
from sklearn import metrics
from typing import Union
from collections import defaultdict
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn import DataParallel
from torch.utils.tensorboard import SummaryWriter
from metrics.base_metrics_class import calculate_metrics_for_train
from .base_detector import AbstractDetector
from detectors import DETECTOR
from networks import BACKBONE
from loss import LOSSFUNC
logger = logging.getLogger(__name__)
@DETECTOR.register_module(module_name='rfm')
class RFMDetector(AbstractDetector):
def __init__(self, config):
super().__init__()
self.config = config
self.backbone = self.build_backbone(config)
self.loss_func = self.build_loss(config)
def build_backbone(self, config):
# prepare the backbone
backbone_class = BACKBONE[config['backbone_name']]
model_config = config['backbone_config']
backbone = backbone_class(model_config)
# if donot load the pretrained weights, fail to get good results
state_dict = torch.load(config['pretrained'])
for name, weights in state_dict.items():
if 'pointwise' in name:
state_dict[name] = weights.unsqueeze(-1).unsqueeze(-1)
state_dict = {k:v for k, v in state_dict.items() if 'fc' not in k}
backbone.load_state_dict(state_dict, False)
logger.info('Load pretrained model successfully!')
return backbone
def build_loss(self, config):
# prepare the loss function
loss_class = LOSSFUNC[config['loss_func']]
loss_func = loss_class()
return loss_func
def features(self, data_dict: dict) -> torch.tensor:
return self.backbone.features(data_dict['image']) #32,3,256,256
def classifier(self, features: torch.tensor) -> torch.tensor:
return self.backbone.classifier(features)
def get_losses(self, data_dict: dict, pred_dict: dict) -> dict:
label = data_dict['label']
pred = pred_dict['cls']
loss = self.loss_func(pred, label)
loss_dict = {'overall': loss}
return loss_dict
def get_train_metrics(self, data_dict: dict, pred_dict: dict) -> dict:
label = data_dict['label']
pred = pred_dict['cls']
# compute metrics for batch data
auc, eer, acc, ap = calculate_metrics_for_train(label.detach(), pred.detach())
metric_batch_dict = {'acc': acc, 'auc': auc, 'eer': eer, 'ap': ap}
return metric_batch_dict
def cal_fam(self, inputs):
self.backbone.zero_grad()
inputs = inputs.detach().clone()
inputs.requires_grad_()
_, output = self.backbone(inputs)
target = output[:, 1]-output[:, 0]
target.backward(torch.ones(target.shape).cuda())
fam = torch.abs(inputs.grad)
fam = torch.max(fam, dim=1, keepdim=True)[0]
return fam
def apply_rfm_augmentation(self, data):
device = data.device
self.backbone.eval()
# 直接调用 self.cal_fam 而非 cal_fam
mask = self.cal_fam(data)
imgmask = torch.ones_like(mask)
imgh, imgw = 256, 256
# Apply the mask based on FAM
for i in range(len(mask)):
maxind = np.argsort(mask[i].cpu().numpy().flatten())[::-1]
pointcnt = 0
for pointind in maxind:
pointx = pointind // imgw
pointy = pointind % imgw
if imgmask[i][0][pointx][pointy] == 1:
eH, eW = 120, 120
maskh = random.randint(1, eH)
maskw = random.randint(1, eW)
sh = random.randint(1, maskh)
sw = random.randint(1, maskw)
top = max(pointx - sh, 0)
bot = min(pointx + (maskh - sh), imgh)
lef = max(pointy - sw, 0)
rig = min(pointy + (maskw - sw), imgw)
imgmask[i][:, top:bot, lef:rig] = torch.zeros_like(imgmask[i][:, top:bot, lef:rig])
pointcnt += 1
if pointcnt >= 3:
break
# Apply the masked data
data = imgmask * data + (1 - imgmask) * (torch.rand_like(data) * 2 - 1)
self.backbone.train()
return data
def forward(self, data_dict: dict, inference=False) -> dict:
if not inference:
# 非推理阶段,应用 RFM 增强
data_dict['image'] = self.apply_rfm_augmentation(data_dict['image'])
# get the features by backbone
features = self.features(data_dict)
# get the prediction by classifier
pred = self.classifier(features)
# get the probability of the pred
prob = torch.softmax(pred, dim=1)[:, 1]
# build the prediction dict for each output
pred_dict = {'cls': pred, 'prob': prob, 'feat': features}
return pred_dict