-
Notifications
You must be signed in to change notification settings - Fork 91
/
srm_detector.py
653 lines (545 loc) · 23.4 KB
/
srm_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
'''
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-0706
# description: Class for the SRMDetector
Functions in the Class are summarized as:
1. __init__: Initialization
2. build_backbone: Backbone-building
3. build_loss: Loss-function-building
4. features: Feature-extraction
5. classifier: Classification
6. get_losses: Loss-computation
7. get_train_metrics: Training-metrics-computation
8. get_test_metrics: Testing-metrics-computation
9. forward: Forward-propagation
Reference:
@inproceedings{luo2021generalizing,
title={Generalizing face forgery detection with high-frequency features},
author={Luo, Yuchen and Zhang, Yong and Yan, Junchi and Liu, Wei},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
pages={16317--16326},
year={2021}
}
Notes:
Other implementation modules are provided by the authors.
'''
import os
import datetime
import numbers
import math
import logging
import numpy as np
from sklearn import metrics
from typing import Union
from collections import defaultdict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn import DataParallel
from torch.utils.tensorboard import SummaryWriter
from metrics.base_metrics_class import calculate_metrics_for_train
from .base_detector import AbstractDetector
from detectors import DETECTOR
from networks import BACKBONE
from loss import LOSSFUNC
import random
logger = logging.getLogger(__name__)
@DETECTOR.register_module(module_name='srm')
class SRMDetector(AbstractDetector):
def __init__(self, config):
super().__init__()
self.config = config
# prepare the backbone for rgb and srm branch
self.backbone_rgb = self.build_backbone(config)
self.backbone_srm = self.build_backbone(config)
# srm specific layers and modules
self.noise = GaussianNoise(clip=1)
self.blur = GaussianSmoothing(channels=3, kernel_size=7, sigma=0.8)
self.srm_conv0 = SRMConv2d_simple(inc=3)
self.srm_conv1 = SRMConv2d_Separate(32, 32)
self.srm_conv2 = SRMConv2d_Separate(64, 64)
self.relu = nn.ReLU(inplace=True)
self.att_map = None
self.srm_sa = SRMPixelAttention(3)
self.srm_sa_post = nn.Sequential(
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.dual_cma0 = DualCrossModalAttention(in_dim=728)
self.dual_cma1 = DualCrossModalAttention(in_dim=728)
self.fusion = FeatureFusionModule()
# prepare the loss function
self.loss_func = self.build_loss(config)
def build_backbone(self, config):
assert config['backbone_name'] == 'xception', "SRM only supports the xception backbone"
# prepare the backbone
backbone_class = BACKBONE[config['backbone_name']]
model_config = config['backbone_config']
backbone = backbone_class(model_config)
# To get a good performance, use the ImageNet-pretrained Xception model
state_dict = torch.load(config['pretrained'])
for name, weights in state_dict.items():
if 'pointwise' in name:
state_dict[name] = weights.unsqueeze(-1).unsqueeze(-1)
state_dict = {k:v for k, v in state_dict.items() if 'fc' not in k}
backbone.load_state_dict(state_dict, False)
logger.info('Load pretrained model from {}'.format(config['pretrained']))
return backbone
def build_loss(self, config):
# prepare the loss function
loss_class = LOSSFUNC[config['loss_func']]
loss_func = loss_class(gamma=0., m=0.45, s=30, t=1.) # use am-softmax for srm, params are specified by the author
return loss_func
def features(self, data_dict: dict) -> torch.tensor:
x = data_dict['image'] # get the image as input for srm
srm = self.srm_conv0(x)
x = self.backbone_rgb.fea_part1_0(x)
y = self.backbone_srm.fea_part1_0(srm) \
+ self.srm_conv1(x)
y = self.relu(y)
x = self.backbone_rgb.fea_part1_1(x)
y = self.backbone_srm.fea_part1_1(y) \
+ self.srm_conv2(x)
y = self.relu(y)
# srm guided spatial attention
self.att_map = self.srm_sa(srm)
x = x * self.att_map + x # use the residual
x = self.srm_sa_post(x)
x = self.backbone_rgb.fea_part2(x)
y = self.backbone_srm.fea_part2(y)
x, y = self.dual_cma0(x, y)
x = self.backbone_rgb.fea_part3(x)
y = self.backbone_srm.fea_part3(y)
x, y = self.dual_cma1(x, y)
x = self.backbone_rgb.fea_part4(x)
y = self.backbone_srm.fea_part4(y)
x = self.backbone_rgb.fea_part5(x)
y = self.backbone_srm.fea_part5(y)
fea = self.fusion(x, y)
return fea
def classifier(self, features: torch.tensor) -> torch.tensor:
return self.backbone_rgb.classifier(features)
def get_losses(self, data_dict: dict, pred_dict: dict) -> dict:
label = data_dict['label']
pred = pred_dict['cls']
loss = self.loss_func(pred, label)
loss_dict = {'overall': loss}
return loss_dict
def get_train_metrics(self, data_dict: dict, pred_dict: dict) -> dict:
label = data_dict['label']
pred = pred_dict['cls']
# compute metrics for batch data
auc, eer, acc, ap = calculate_metrics_for_train(label.detach(), pred.detach())
metric_batch_dict = {'acc': acc, 'auc': auc, 'eer': eer, 'ap': ap}
# we dont compute the video-level metrics for training
self.video_names = []
return metric_batch_dict
def forward(self, data_dict: dict, inference=False) -> dict:
# get the features by backbone
features = self.features(data_dict)
# get the prediction by classifier
pred = self.classifier(features)
# get the probability of the pred
prob = torch.softmax(pred, dim=1)[:, 1]
# build the prediction dict for each output
pred_dict = {'cls': pred, 'prob': prob, 'feat': features}
return pred_dict
# ===================================== other modules for SRM # =====================================
class SRMConv2d(nn.Module):
def __init__(self, learnable=False):
super(SRMConv2d, self).__init__()
self.weight = nn.Parameter(torch.Tensor(30, 3, 5, 5),
requires_grad=learnable)
self.bias = nn.Parameter(torch.Tensor(30), \
requires_grad=learnable)
self.reset_parameters()
def reset_parameters(self):
SRM_npy = np.load('lib/component/SRM_Kernels.npy')
# print(SRM_npy.shape)
SRM_npy = np.repeat(SRM_npy, 3, axis=1)
# print(SRM_npy.shape)
self.weight.data.numpy()[:] = SRM_npy
self.bias.data.zero_()
def forward(self, input):
return F.conv2d(input, self.weight, stride=1, padding=2)
class SRMConv2d_simple(nn.Module):
def __init__(self, inc=3, learnable=False):
super(SRMConv2d_simple, self).__init__()
self.truc = nn.Hardtanh(-3, 3)
kernel = self._build_kernel(inc) # (3,3,5,5)
self.kernel = nn.Parameter(data=kernel, requires_grad=learnable)
# self.hor_kernel = self._build_kernel().transpose(0,1,3,2)
def forward(self, x):
'''
x: imgs (Batch, H, W, 3)
'''
out = F.conv2d(x, self.kernel, stride=1, padding=2)
out = self.truc(out)
return out
def _build_kernel(self, inc):
# filter1: KB
filter1 = [[0, 0, 0, 0, 0],
[0, -1, 2, -1, 0],
[0, 2, -4, 2, 0],
[0, -1, 2, -1, 0],
[0, 0, 0, 0, 0]]
# filter2:KV
filter2 = [[-1, 2, -2, 2, -1],
[2, -6, 8, -6, 2],
[-2, 8, -12, 8, -2],
[2, -6, 8, -6, 2],
[-1, 2, -2, 2, -1]]
# # filter3:hor 2rd
filter3 = [[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 1, -2, 1, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]]
# filter3:hor 2rd
# filter3 = [[0, 0, 0, 0, 0],
# [0, 0, 1, 0, 0],
# [0, 1, -4, 1, 0],
# [0, 0, 1, 0, 0],
# [0, 0, 0, 0, 0]]
filter1 = np.asarray(filter1, dtype=float) / 4.
filter2 = np.asarray(filter2, dtype=float) / 12.
filter3 = np.asarray(filter3, dtype=float) / 2.
# statck the filters
filters = [[filter1],#, filter1, filter1],
[filter2],#, filter2, filter2],
[filter3]]#, filter3, filter3]] # (3,3,5,5)
filters = np.array(filters)
filters = np.repeat(filters, inc, axis=1)
filters = torch.FloatTensor(filters) # (3,3,5,5)
return filters
class SRMConv2d_Separate(nn.Module):
def __init__(self, inc, outc, learnable=False):
super(SRMConv2d_Separate, self).__init__()
self.inc = inc
self.truc = nn.Hardtanh(-3, 3)
kernel = self._build_kernel(inc) # (3,3,5,5)
self.kernel = nn.Parameter(data=kernel, requires_grad=learnable)
# self.hor_kernel = self._build_kernel().transpose(0,1,3,2)
self.out_conv = nn.Sequential(
nn.Conv2d(3*inc, outc, 1, 1, 0, 1, 1, bias=False),
nn.BatchNorm2d(outc),
nn.ReLU(inplace=True)
)
for ly in self.out_conv.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
def forward(self, x):
'''
x: imgs (Batch,inc, H, W)
kernel: (outc,inc,kH,kW)
'''
out = F.conv2d(x, self.kernel, stride=1, padding=2, groups=self.inc)
out = self.truc(out)
out = self.out_conv(out)
return out
def _build_kernel(self, inc):
# filter1: KB
filter1 = [[0, 0, 0, 0, 0],
[0, -1, 2, -1, 0],
[0, 2, -4, 2, 0],
[0, -1, 2, -1, 0],
[0, 0, 0, 0, 0]]
# filter2:KV
filter2 = [[-1, 2, -2, 2, -1],
[2, -6, 8, -6, 2],
[-2, 8, -12, 8, -2],
[2, -6, 8, -6, 2],
[-1, 2, -2, 2, -1]]
# # filter3:hor 2rd
filter3 = [[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 1, -2, 1, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]]
# filter3:hor 2rd
# filter3 = [[0, 0, 0, 0, 0],
# [0, 0, 1, 0, 0],
# [0, 1, -4, 1, 0],
# [0, 0, 1, 0, 0],
# [0, 0, 0, 0, 0]]
filter1 = np.asarray(filter1, dtype=float) / 4.
filter2 = np.asarray(filter2, dtype=float) / 12.
filter3 = np.asarray(filter3, dtype=float) / 2.
# statck the filters
filters = [[filter1],#, filter1, filter1],
[filter2],#, filter2, filter2],
[filter3]]#, filter3, filter3]] # (3,3,5,5) => (3,1,5,5)
filters = np.array(filters)
# filters = np.repeat(filters, inc, axis=1)
filters = np.repeat(filters, inc, axis=0)
filters = torch.FloatTensor(filters) # (3*inc,1,5,5)
# print(filters.size())
return filters
class GaussianSmoothing(nn.Module):
"""
Apply gaussian smoothing on a
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
in the input using a depthwise convolution.
Arguments:
channels (int, sequence): Number of channels of the input tensors. Output will
have this number of channels as well.
kernel_size (int, sequence): Size of the gaussian kernel.
sigma (float, sequence): Standard deviation of the gaussian kernel.
dim (int, optional): The number of dimensions of the data.
Default value is 2 (spatial).
"""
def __init__(self, channels, kernel_size, sigma=0.1, dim=2):
super(GaussianSmoothing, self).__init__()
self.kernel_size = kernel_size
if isinstance(kernel_size, numbers.Number):
kernel_size = [kernel_size] * dim
if isinstance(sigma, numbers.Number):
sigma = [sigma] * dim
# The gaussian kernel is the product of the
# gaussian function of each dimension.
kernel = 1
meshgrids = torch.meshgrid(
[
torch.arange(size, dtype=torch.float32)
for size in kernel_size
]
)
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
mean = (size - 1) / 2
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \
torch.exp(-((mgrid - mean) / std) ** 2 / 2)
# Make sure sum of values in gaussian kernel equals 1.
kernel = kernel / torch.sum(kernel)
# Reshape to depthwise convolutional weight
kernel = kernel.view(1, 1, *kernel.size())
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
self.register_buffer('weight', kernel)
self.groups = channels
if dim == 1:
self.conv = F.conv1d
elif dim == 2:
self.conv = F.conv2d
elif dim == 3:
self.conv = F.conv3d
else:
raise RuntimeError(
'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(
dim)
)
def forward(self, input):
"""
Apply gaussian filter to input.
Arguments:
input (torch.Tensor): Input to apply gaussian filter on.
Returns:
filtered (torch.Tensor): Filtered output.
"""
if self.training:
return self.conv(input, weight=self.weight, groups=self.groups, padding=self.kernel_size//2)
else:
return input
class GaussianNoise(nn.Module):
def __init__(self, mean=0, std=0.1, clip=1):
super(GaussianNoise, self).__init__()
self.mean = mean
self.std = std
self.clip = clip
def forward(self, x):
if self.training:
noise = x.data.new(x.size()).normal_(self.mean, self.std)
return torch.clamp(x + noise, -self.clip, self.clip)
else:
return x
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=8):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.sharedMLP = nn.Sequential(
nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False),
nn.ReLU(),
nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False))
self.sigmoid = nn.Sigmoid()
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight.data, gain=0.02)
def forward(self, x):
avgout = self.sharedMLP(self.avg_pool(x))
maxout = self.sharedMLP(self.max_pool(x))
return self.sigmoid(avgout + maxout)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), "kernel size must be 3 or 7"
padding = 3 if kernel_size == 7 else 1
self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight.data, gain=0.02)
def forward(self, x):
avgout = torch.mean(x, dim=1, keepdim=True)
maxout, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avgout, maxout], dim=1)
x = self.conv(x)
return self.sigmoid(x)
class CrossModalAttention(nn.Module):
""" CMA attention Layer"""
def __init__(self, in_dim, activation=None, ratio=8, cross_value=True):
super(CrossModalAttention, self).__init__()
self.chanel_in = in_dim
self.activation = activation
self.cross_value = cross_value
self.query_conv = nn.Conv2d(
in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1)
self.key_conv = nn.Conv2d(
in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1)
self.value_conv = nn.Conv2d(
in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight.data, gain=0.02)
def forward(self, x, y):
"""
inputs :
x : input feature maps( B X C X W X H)
returns :
out : self attention value + input feature
attention: B X N X N (N is Width*Height)
"""
B, C, H, W = x.size()
proj_query = self.query_conv(x).view(
B, -1, H*W).permute(0, 2, 1) # B , HW, C
proj_key = self.key_conv(y).view(
B, -1, H*W) # B X C x (*W*H)
energy = torch.bmm(proj_query, proj_key) # B, HW, HW
attention = self.softmax(energy) # BX (N) X (N)
if self.cross_value:
proj_value = self.value_conv(y).view(
B, -1, H*W) # B , C , HW
else:
proj_value = self.value_conv(x).view(
B, -1, H*W) # B , C , HW
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(B, C, H, W)
out = self.gamma*out + x
if self.activation is not None:
out = self.activation(out)
return out # , attention
class DualCrossModalAttention(nn.Module):
""" Dual CMA attention Layer"""
def __init__(self, in_dim, activation=None, size=16, ratio=8, ret_att=False):
super(DualCrossModalAttention, self).__init__()
self.chanel_in = in_dim
self.activation = activation
self.ret_att = ret_att
# query conv
self.key_conv1 = nn.Conv2d(
in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1)
self.key_conv2 = nn.Conv2d(
in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1)
self.key_conv_share = nn.Conv2d(
in_channels=in_dim//ratio, out_channels=in_dim//ratio, kernel_size=1)
self.linear1 = nn.Linear(size*size, size*size)
self.linear2 = nn.Linear(size*size, size*size)
# separated value conv
self.value_conv1 = nn.Conv2d(
in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.gamma1 = nn.Parameter(torch.zeros(1))
self.value_conv2 = nn.Conv2d(
in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.gamma2 = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight.data, gain=0.02)
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight.data, gain=0.02)
def forward(self, x, y):
"""
inputs :
x : input feature maps( B X C X W X H)
returns :
out : self attention value + input feature
attention: B X N X N (N is Width*Height)
"""
B, C, H, W = x.size()
def _get_att(a, b):
proj_key1 = self.key_conv_share(self.key_conv1(a)).view(
B, -1, H*W).permute(0, 2, 1) # B , HW, C
proj_key2 = self.key_conv_share(self.key_conv2(b)).view(
B, -1, H*W) # B X C x (*W*H)
#print('proj_key1:', proj_key1[0][0][:5].cpu().detach().numpy())
#print('proj_key2:', proj_key2[0][:5][0:5].cpu().detach().numpy())
energy = torch.bmm(proj_key1, proj_key2) # B, HW, HW
#print('energy:', energy[0][0][:5].cpu().detach().numpy())
attention1 = self.softmax(self.linear1(energy))
attention2 = self.softmax(self.linear2(energy.permute(0,2,1))) # BX (N) X (N)
#print('1:', attention1[0]==attention1[1])
#print('2:', attention2[0]==attention2[1])
return attention1, attention2
att_y_on_x, att_x_on_y = _get_att(x, y)
#print('att_y_on_x:', att_y_on_x[0][0][:5].cpu().detach().numpy())
proj_value_y_on_x = self.value_conv2(y).view(
B, -1, H*W) # B , C , HW
out_y_on_x = torch.bmm(proj_value_y_on_x, att_y_on_x.permute(0, 2, 1))
out_y_on_x = out_y_on_x.view(B, C, H, W)
out_x = self.gamma1*out_y_on_x + x
proj_value_x_on_y = self.value_conv1(x).view(
B, -1, H*W) # B , C , HW
out_x_on_y = torch.bmm(proj_value_x_on_y, att_x_on_y.permute(0, 2, 1))
out_x_on_y = out_x_on_y.view(B, C, H, W)
out_y = self.gamma2*out_x_on_y + y
if self.ret_att:
return out_x, out_y, att_y_on_x, att_x_on_y
return out_x, out_y # , attention
class SRMPixelAttention(nn.Module):
def __init__(self, in_channels):
super(SRMPixelAttention, self).__init__()
self.srm = SRMConv2d_simple()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, 32, 3, 2, 0, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 64, 3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
self.pa = SpatialAttention()
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, a=1)
if not m.bias is None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x_srm = self.srm(x)
fea = self.conv(x_srm)
# fea += fea * self.ca(fea)
att_map = self.pa(fea)
# return x * y
return att_map
class FeatureFusionModule(nn.Module):
def __init__(self, in_chan=2048*2, out_chan=2048, *args, **kwargs):
super(FeatureFusionModule, self).__init__()
self.convblk = nn.Sequential(
nn.Conv2d(in_chan, out_chan, 1, 1, 0, bias=False),
nn.BatchNorm2d(out_chan),
nn.ReLU()
)
self.ca = ChannelAttention(out_chan, ratio=16)
self.init_weight()
def forward(self, x, y):
fuse_fea = self.convblk(torch.cat((x, y), dim=1))
#fuse_fea = fuse_fea + fuse_fea * self.ca(fuse_fea) # Is it correct? F *(1+a) or F * a?
fuse_fea = fuse_fea * self.ca(fuse_fea) # changed by yong
return fuse_fea
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None:
nn.init.constant_(ly.bias, 0)