-
Notifications
You must be signed in to change notification settings - Fork 91
/
uia_vit_detector.py
418 lines (346 loc) · 18.3 KB
/
uia_vit_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
"""
# author: Kangran ZHAO
# email: [email protected]
# date: 2024-0410
# description: Class for the UIA-ViT Detector
Functions in the Class are summarized as:
1. __init__: Initialization
2. build_backbone: Backbone-building
3. build_loss: Loss-function-building
4. features: Feature-extraction
5. classifier: Classification
6. get_losses: Loss-computation
7. get_train_metrics: Training-metrics-computation
8. get_test_metrics: Testing-metrics-computation
9. forward: Forward-propagation
Reference:
@inproceedings{zhuang2020UIA,
title={UIA-ViT: Unsupervised Inconsistency-Aware Method based on Vision Transformer for Face Forgery Detection},
author={Zhuang, Wanyi and Chu, Qi and Tan, Zhentao and Liu, Qiankun and Yuan, Haojie and Miao, Changtao and Luo, Zixiang and Yu, Nenghai},
booktitle={European Conference on Computer Vision (ECCV)},
year={2022},
}
Codes are modified based on GitHub repo https://github.com/wany0824/UIA-ViT
"""
from functools import partial
import torch
import torch.nn as nn
from detectors import DETECTOR
from loss import LOSSFUNC
from metrics.base_metrics_class import calculate_metrics_for_train
from sklearn.covariance import LedoitWolf
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from .base_detector import AbstractDetector
@DETECTOR.register_module(module_name='uia_vit')
class UIAViTDetector(AbstractDetector):
def __init__(self, config):
super().__init__()
self.config = config
self.batch_per_epoch = config["batch_per_epoch"]
self.num_epoch = config["nEpochs"]
self.batch_cnt = 0
self.real_feature_list, self.fake_feature_list = [], []
self.real_inv_covariance, self.fake_inv_covariance = None, None
self.real_feature_mean, self.fake_feature_mean = None, None
self.model = self.build_backbone(config)
self.loss_func = self.build_loss(config)
self.loss_weight = config["loss_func"]["weights"]
def build_backbone(self, config):
model = VisionTransformer(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), num_classes=2)
state_dict = torch.hub.load_state_dict_from_url(config["pretrained"])
del state_dict["head.bias"], state_dict["head.weight"]
model.load_state_dict(state_dict, strict=False)
return model
def build_loss(self, config):
cls_loss_class = LOSSFUNC[config["loss_func"]["cls_loss"]]
pcl_loss_class = LOSSFUNC[config["loss_func"]["pcl_loss"]]
cls_loss_func = cls_loss_class()
pcl_loss_func = pcl_loss_class(c_real=self.model.c_real, c_fake=self.model.c_fake, c_cross=self.model.c_cross)
return {"cls": cls_loss_func, "pcl": pcl_loss_func}
def features(self, data_dict: dict) -> torch.tensor:
pass
def classifier(self, features: torch.tensor) -> torch.tensor:
pass # do not overwrite this, since classifier structure has been written in self.forward()
def get_losses(self, data_dict: dict, pred_dict: dict) -> dict:
label = data_dict["label"]
pred = pred_dict["cls"]
ce_loss = self.loss_func["cls"](pred, label)
if self.batch_cnt > self.batch_per_epoch and self.model.training:
pcl_loss = self.loss_func["pcl"](pred_dict["attention_map_real"],
pred_dict["attention_map_fake"],
pred_dict["feat"],
self.real_feature_mean,
self.real_inv_covariance,
self.fake_feature_mean,
self.fake_inv_covariance,
data_dict["label"])
overall_loss = ce_loss + \
self.loss_weight[0] * pcl_loss + \
self.loss_weight[1] * (1 / torch.abs(self.model.c_real) + 1 / torch.abs(self.model.c_fake)) + \
self.loss_weight[2] * torch.abs(self.model.c_cross)
return {"overall": overall_loss, "ce_loss": ce_loss, "pcl_loss": pcl_loss,
"c1": self.model.c_real, "c2": self.model.c_fake, "c3": self.model.c_cross}
else:
return {"overall": ce_loss}
def get_train_metrics(self, data_dict: dict, pred_dict: dict) -> dict:
label = data_dict['label']
pred = pred_dict['cls']
auc, eer, acc, ap = calculate_metrics_for_train(label.detach(), pred.detach())
metric_batch_dict = {'acc': acc, 'auc': auc, 'eer': eer, 'ap': ap}
return metric_batch_dict
def forward(self, data_dict: dict, inference=False) -> dict:
# compute MVG
if self.model.training and self.batch_cnt != 0 and self.batch_cnt % (self.config["batch_per_epoch"] // 2) == 0:
real_feature_tensor = torch.cat(self.real_feature_list, dim=0).cuda()
self.real_inv_covariance = fit_inv_covariance(real_feature_tensor).cpu()
self.real_feature_mean = real_feature_tensor.mean(dim=0).cpu()
self.real_feature_list = []
fake_feature_tensor = torch.cat(self.fake_feature_list, dim=0).cuda()
self.fake_inv_covariance = fit_inv_covariance(fake_feature_tensor).cpu()
self.fake_feature_mean = fake_feature_tensor.mean(dim=0).cpu()
self.fake_feature_list = []
step = self.batch_cnt / (self.batch_per_epoch * self.num_epoch) if self.model.training else 1
pred, feature_patch, attention_map = self.model(data_dict["image"], step=step)
# collect features of real patches and inner fake patches
real_indices = torch.where(data_dict["label"] == 0.0)[0]
feature_patch_real = feature_patch[real_indices[:4]]
B, H, W, C = feature_patch_real.size()
self.real_feature_list.append(feature_patch_real.reshape(B * H * W, C).cpu().detach())
fake_indices = torch.where(data_dict["label"] == 1.0)[0]
feature_patch_fake = feature_patch[fake_indices[:4], 3:11, 3:11, :] # hard coding, extend config to modify if needed
B, H, W, C = feature_patch_fake.size()
self.fake_feature_list.append(feature_patch_fake.reshape(B * H * W, C).cpu().detach())
attention_map_real = torch.sigmoid(torch.mean(attention_map[real_indices, :, 1:, 1:], dim=1))
attention_map_fake = torch.sigmoid(torch.mean(attention_map[fake_indices, :, 1:, 1:], dim=1))
prob = torch.softmax(pred, dim=1)[:, 1]
pred_dict = {"cls": pred,
"prob": prob,
"feat": feature_patch}
del attention_map, feature_patch
pred_dict["attention_map_real"] = attention_map_real
pred_dict["attention_map_fake"] = attention_map_fake
self.batch_cnt += 1
return pred_dict
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
# [B, 196, 768] -> [B, 196, 768*3] -> [B, 196, 3, 8, 96] -> [3, B, 8, 196, 96]
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn_qk = (q @ k.transpose(-2, -1)) * self.scale
attn_s = attn_qk.softmax(dim=-1)
attn = self.attn_drop(attn_s)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn_qk
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x_attn, attn = self.attn(self.norm1(x))
x = x + self.drop_path(x_attn)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x, attn
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
# assert H == self.img_size[0] and W == self.img_size[1], \
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2) # [B, H*W, C]
return x
class HybridEmbed(nn.Module):
""" CNN Feature Map Embedding
Extract feature map from CNN, flatten, project to embedding dim.
"""
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768):
super().__init__()
assert isinstance(backbone, nn.Module)
img_size = to_2tuple(img_size)
self.img_size = img_size
self.backbone = backbone
if feature_size is None:
with torch.no_grad():
# FIXME this is hacky, but most reliable way of determining the exact dim of the output feature
# map for all networks, the feature metadata has reliable channel and stride info, but using
# stride to calc feature dim requires info about padding of each stage that isn't captured.
training = backbone.training
if training:
backbone.eval()
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1]
feature_size = o.shape[-2:]
feature_dim = o.shape[1]
backbone.train(training)
else:
feature_size = to_2tuple(feature_size)
feature_dim = self.backbone.feature_info.channels()[-1]
self.num_patches = feature_size[0] * feature_size[1]
self.proj = nn.Linear(feature_dim, embed_dim)
def forward(self, x):
x = self.backbone(x)[-1]
x = x.flatten(2).transpose(1, 2)
x = self.proj(x)
return x
class VisionTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
if hybrid_backbone is not None:
self.patch_embed = HybridEmbed(
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
else:
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
self.c_real = nn.Parameter(torch.tensor(0.6))
self.c_fake = nn.Parameter(torch.tensor(0.6))
self.c_cross = nn.Parameter(torch.tensor(0.2))
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.norm_middle = norm_layer(embed_dim)
# NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here
# self.repr = nn.Linear(embed_dim, representation_size)
# self.repr_act = nn.Tanh()
# Classifier head
self.head = nn.Linear(embed_dim * 2, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x, attn_blk, feat_blk=False):
if feat_blk == False:
feat_blk = attn_blk - 1
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
if isinstance(attn_blk, int):
for i, blk in enumerate(self.blocks):
if i == feat_blk:
x_block = self.norm_middle(x)
if i == attn_blk:
attn_block = attn
x, attn = blk(x)
x = self.norm(x) # for vit_base_patch16_224: x.size() = [B, 14**2+1 (197) , 768]
if i == attn_blk - 1:
attn_block = attn
if i == feat_blk - 1:
x_block = x
elif isinstance(attn_blk, list):
attn_list = []
for i, blk in enumerate(self.blocks):
if i == feat_blk:
x_block = self.norm_middle(x)
if i in attn_blk:
attn_list.append(attn)
x, attn = blk(x)
x = self.norm(x) # for vit_base_patch16_224: x.size() = [B, 14**2+1 (197) , 768]
if (i + 1) in attn_blk:
attn_list.append(attn)
if i == feat_blk - 1:
x_block = x
attn_block = torch.cat(attn_list, dim=1)
x_block = x_block[:, 1:].reshape(
(x_block.size(0), int(x_block.size(1) ** 0.5), int(x_block.size(1) ** 0.5), x_block.size(2)))
return x, x_block, attn_block
def forward(self, x, step=1, attn_blk=[8, 9, 10, 11, 12], feat_blk=6, k=12, thr=0.7, is_progressive=1):
x, feat_block, attn_block = self.forward_features(x, attn_blk, feat_blk)
x_cls, x_patch = x[:, 0], x[:, 1:]
B, PP, C = x_patch.shape
localization_map = torch.sigmoid(torch.mean(attn_block[:, :, 0, 1:], dim=1))
if is_progressive:
if step < 1 / 8.:
localization_map = (torch.ones(B, 1, PP) / PP).to(x_patch.device)
else:
w = torch.sigmoid(torch.tensor(-k * (step - thr))).to(x_patch.device)
localization_map = (w * torch.ones(B, 1, PP).to(x_patch.device) + (1 - w) * localization_map.reshape(B,
1,
PP).to(
x_patch.device)) / PP
else:
localization_map = localization_map.reshape(B, 1, PP).to(x_patch.device) / PP
x = torch.cat([x_cls, torch.bmm(localization_map, x_patch).squeeze(1)], -1)
x = self.head(x)
return x, feat_block, attn_block
def fit_inv_covariance(samples):
return torch.Tensor(LedoitWolf().fit(samples.cpu()).precision_).to(
samples.device
)