-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
357 lines (275 loc) · 12.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import os
import random
import time
from pathlib import Path
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import webdataset as wds
import yaml
from torch import optim
from torch.distributed.algorithms.join import Join
from torch.nn.parallel import DistributedDataParallel
import mlspm.data_loading as dl
import mlspm.preprocessing as pp
import mlspm.visualization as vis
from mlspm import utils
from mlspm.cli import parse_args
from mlspm.image.models import EDAFMNet
from mlspm.logging import LossLogPlot, SyncedLoss
from mlspm.losses import WeightedMSELoss
def make_model(device, cfg):
model = EDAFMNet(device=device)
criterion = WeightedMSELoss(cfg["loss_weights"])
optimizer = optim.Adam(model.parameters(), lr=cfg["lr"])
lr_decay_rate = 1e-5
lr_decay = optim.lr_scheduler.LambdaLR(optimizer, lambda b: 1.0 / (1.0 + lr_decay_rate * b))
return model, criterion, optimizer, lr_decay
def apply_preprocessing(batch):
X = batch["X"]
Y = batch["Y"]
xyz = batch["xyz"]
X = [X[0], X[1]] # Pick CO and Xe
X = [x[:, :, :, 2:8] for x in X]
pp.rand_shift_xy_trend(X, max_layer_shift=0.02, max_total_shift=0.04)
X, Y = pp.add_rotation_reflection(X, Y, reflections=True, multiple=3, crop=(128, 128))
X, Y = pp.random_crop(X, Y, min_crop=0.75, max_aspect=1.25)
pp.add_norm(X, per_layer=True)
pp.add_gradient(X, c=0.3)
pp.add_noise(X, c=0.1, randomize_amplitude=True, normal_amplitude=True)
pp.add_cutout(X, n_holes=5)
return X, Y, xyz
def make_webDataloader(cfg, mode="train"):
assert mode in ["train", "val", "test"], mode
shard_list = dl.ShardList(
cfg[f"urls_{mode}"],
base_path=cfg["data_dir"],
world_size=cfg["world_size"],
rank=cfg["global_rank"],
substitute_param=(mode == "train"),
log=Path(cfg["run_dir"]) / "shards.log",
)
dataset = wds.WebDataset(shard_list)
dataset.pipeline.pop()
if mode == "train":
dataset.append(wds.shuffle(10)) # Shuffle order of shards
dataset.append(wds.tariterators.tarfile_to_samples()) # Gather files inside tar files into samples
dataset.append(wds.split_by_worker) # Use a different subset of samples in shards in different workers
if mode == "train":
dataset.append(wds.shuffle(100)) # Shuffle samples within a worker process
dataset.append(wds.decode("pill", wds.autodecode.basichandlers, dl.decode_xyz)) # Decode image and xyz files
dataset.append(dl.rotate_and_stack()) # Combine separate images into a stack
dataset.append(dl.batched(cfg["batch_size"])) # Gather samples into batches
dataset = dataset.map(apply_preprocessing) # Preprocess batch
dataloader = wds.WebLoader(
dataset,
num_workers=cfg["num_workers"],
batch_size=None, # Batching is done in the WebDataset
pin_memory=True,
collate_fn=dl.default_collate,
persistent_workers=False,
)
return dataset, dataloader
def batch_to_device(batch, device):
X, ref, xyz = batch
X = [x.to(device) for x in X]
ref = [y.to(device) for y in ref]
return X, ref, xyz
def run(cfg):
print(f'Starting on global rank {cfg["global_rank"]}, local rank {cfg["local_rank"]}\n', flush=True)
# Initialize the distributed environment.
dist.init_process_group(cfg["comm_backend"])
start_time = time.perf_counter()
if cfg["global_rank"] == 0:
# Create run directory
if not os.path.exists(cfg["run_dir"]):
os.makedirs(cfg["run_dir"])
dist.barrier()
# Define model, optimizer, and loss
model, criterion, optimizer, lr_decay = make_model(cfg["local_rank"], cfg)
print(f'World size = {cfg["world_size"]}')
print(f"Trainable parameters: {utils.count_parameters(model)}")
# Setup checkpointing and load a checkpoint if available
checkpointer = utils.Checkpointer(
model,
optimizer,
additional_data={"lr_params": lr_decay},
checkpoint_dir=os.path.join(cfg["run_dir"], "Checkpoints/"),
keep_last_epoch=True,
)
init_epoch = checkpointer.epoch
# Setup logging
log_file = open(os.path.join(cfg["run_dir"], "batches.log"), "a")
loss_logger = LossLogPlot(
log_path=os.path.join(cfg["run_dir"], "loss_log.csv"),
plot_path=os.path.join(cfg["run_dir"], "loss_history.png"),
loss_labels=cfg["loss_labels"],
loss_weights=cfg["loss_weights"],
print_interval=cfg["print_interval"],
init_epoch=init_epoch,
stream=log_file,
)
# Wrap model in DistributedDataParallel.
model = DistributedDataParallel(model, device_ids=[cfg["local_rank"]], find_unused_parameters=False)
if cfg["train"]:
# Create datasets and dataloaders
_, train_loader = make_webDataloader(cfg, "train")
_, val_loader = make_webDataloader(cfg, "val")
if cfg["global_rank"] == 0:
if init_epoch <= cfg["epochs"]:
print(f"\n ========= Starting training from epoch {init_epoch}")
else:
print("Model already trained")
for epoch in range(init_epoch, cfg["epochs"] + 1):
if cfg["global_rank"] == 0:
print(f"\n === Epoch {epoch}")
# Train
if cfg["timings"] and cfg["global_rank"] == 0:
t0 = time.perf_counter()
model.train()
with Join([model, loss_logger.get_joinable("train")]):
for ib, batch in enumerate(train_loader):
# Transfer batch to device
X, ref, _ = batch_to_device(batch, cfg["local_rank"])
if cfg["timings"] and cfg["global_rank"] == 0:
torch.cuda.synchronize()
t1 = time.perf_counter()
# Forward
pred, _ = model(X)
losses = criterion(pred, ref)
loss = losses[0]
if cfg["timings"] and cfg["global_rank"] == 0:
torch.cuda.synchronize()
t2 = time.perf_counter()
# Backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_decay.step()
# Log losses
loss_logger.add_train_loss(loss)
if cfg["timings"] and cfg["global_rank"] == 0:
torch.cuda.synchronize()
t3 = time.perf_counter()
print(f"(Train) Load Batch/Forward/Backward: {t1-t0:6f}/{t2-t1:6f}/{t3-t2:6f}")
t0 = t3
# Validate
if cfg["global_rank"] == 0:
val_start = time.perf_counter()
if cfg["timings"]:
t0 = val_start
model.eval()
with Join([loss_logger.get_joinable("val")]):
with torch.no_grad():
for ib, batch in enumerate(val_loader):
# Transfer batch to device
X, ref, _ = batch_to_device(batch, cfg["local_rank"])
if cfg["timings"] and cfg["global_rank"] == 0:
torch.cuda.synchronize()
t1 = time.perf_counter()
# Forward
pred, _ = model(X)
losses = criterion(pred, ref)
loss_logger.add_val_loss(losses[0])
if cfg["timings"] and cfg["global_rank"] == 0:
torch.cuda.synchronize()
t2 = time.perf_counter()
print(f"(Val) Load Batch/Forward: {t1-t0:6f}/{t2-t1:6f}")
t0 = t2
# Write average losses to log and report to terminal
loss_logger.next_epoch()
# Save checkpoint
checkpointer.next_epoch(loss_logger.val_losses[-1][0])
# Return to best epoch
checkpointer.revert_to_best_epoch()
# Return to best epoch, and save model weights
dist.barrier()
checkpointer.revert_to_best_epoch()
if cfg["global_rank"] == 0:
torch.save(model.module.state_dict(), save_path := os.path.join(cfg["run_dir"], "best_model.pth"))
print(f"\nModel saved to {save_path}")
print(f"Best validation loss on epoch {checkpointer.best_epoch}: {checkpointer.best_loss}")
print(
f'Average of best {cfg["avg_best_epochs"]} validation losses: '
f'{np.sort(loss_logger.val_losses[:, 0])[:cfg["avg_best_epochs"]].mean()}'
)
if cfg["test"] or cfg["predict"]:
_, test_loader = make_webDataloader(cfg, "test")
if cfg["test"]:
if cfg["global_rank"] == 0:
print(f"\n ========= Testing with model from epoch {checkpointer.best_epoch}")
eval_losses = SyncedLoss(num_losses=len(loss_logger.loss_labels))
eval_start = time.perf_counter()
if cfg["timings"] and cfg["global_rank"] == 0:
t0 = eval_start
model.eval()
with Join([eval_losses]):
with torch.no_grad():
for ib, batch in enumerate(test_loader):
# Transfer batch to device
X, ref, xyz = batch_to_device(batch, cfg["local_rank"])
if cfg["timings"] and cfg["global_rank"] == 0:
torch.cuda.synchronize()
t1 = time.perf_counter()
# Forward
pred, _ = model(X)
losses = criterion(pred, ref)
eval_losses.append(losses[0])
if (ib + 1) % cfg["print_interval"] == 0:
print(f"Test Batch {ib+1}")
if cfg["timings"] and cfg["global_rank"] == 0:
torch.cuda.synchronize()
t2 = time.perf_counter()
print(f"(Test) t0/Load Batch/Forward: {t1-t0:6f}/{t2-t1:6f}/")
t0 = t2
# Average losses and print
eval_loss = eval_losses.mean()
print(f"Test set loss: {loss_logger.loss_str(eval_loss)}")
# Save test set loss to file
with open(os.path.join(cfg["run_dir"], "test_loss.txt"), "w") as f:
f.write(";".join([str(l) for l in eval_loss]))
if cfg["predict"] and cfg["global_rank"] == 0:
# Make predictions
print(f'\n ========= Predict on {cfg["pred_batches"]} batches from the test set')
counter = 0
pred_dir = os.path.join(cfg["run_dir"], "predictions/")
with torch.no_grad():
for ib, batch in enumerate(test_loader):
if ib >= cfg["pred_batches"]:
break
# Transfer batch to device
X, ref, xyz = batch_to_device(batch, cfg["local_rank"])
# Forward
pred, _ = model(X)
# Data back to host
X = [x.squeeze(1).cpu().numpy() for x in X]
pred = [p.cpu().numpy() for p in pred]
ref = [r.cpu().numpy() for r in ref]
# Save xyzs
utils.batch_write_xyzs(xyz, outdir=pred_dir, start_ind=counter)
# Visualize input AFM images and predictions
vis.make_input_plots(X, outdir=pred_dir, start_ind=counter)
vis.make_prediction_plots(pred, ref, descriptors=cfg["loss_labels"], outdir=pred_dir, start_ind=counter)
counter += len(X[0])
print(f'Done at rank {cfg["global_rank"]}. Total time: {time.perf_counter() - start_time:.0f}s')
log_file.close()
dist.barrier()
dist.destroy_process_group()
if __name__ == "__main__":
# Get config
cfg = parse_args()
run_dir = Path(cfg["run_dir"])
run_dir.mkdir(exist_ok=True, parents=True)
with open(run_dir / "config.yaml", "w") as f:
# Remember settings
yaml.safe_dump(cfg, f)
# Set random seeds
torch.manual_seed(cfg["random_seed"])
random.seed(cfg["random_seed"])
np.random.seed(cfg["random_seed"])
# Start run
cfg["world_size"] = int(os.environ["WORLD_SIZE"])
cfg["global_rank"] = int(os.environ["RANK"])
cfg["local_rank"] = int(os.environ["LOCAL_RANK"])
run(cfg)