-
Notifications
You must be signed in to change notification settings - Fork 0
/
z_k600_tracking.py
341 lines (294 loc) · 15.3 KB
/
z_k600_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import os
import random
import time
import cv2
import torch
import numpy as np
import supervision as sv
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor, build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
from utils.track_utils import sample_points_from_masks
from utils.video_utils import create_video_from_images
from utils.common_utils import CommonUtils
from utils.mask_dictionary_model import MaskDictionaryModel, ObjectInfo
import json
import copy
from pathlib import Path
from tqdm import tqdm
import pandas as pd
# This demo shows the continuous object tracking plus reverse tracking with Grounding DINO and SAM 2
"""
Step 1: Environment settings and model initialization
"""
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# init sam image predictor and video predictor model
sam2_checkpoint = "./checkpoints/sam2.1_hiera_large.pt"
model_cfg = "sam2.1_hiera_l.yaml"
device = "cuda" if torch.cuda.is_available() else "cpu"
print("device", device)
video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
sam2_image_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
image_predictor = SAM2ImagePredictor(sam2_image_model)
# init grounding dino model from huggingface
model_id = "IDEA-Research/grounding-dino-base"
processor = AutoProcessor.from_pretrained(model_id)
grounding_model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
# setup the input image and text prompt for SAM 2 and Grounding DINO
# VERY important: text queries need to be lowercased + end with a dot
concatenated_text = "person."
# `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
video_dir = "/share_io02_hdd/shijiapeng/K600_annotations_24_11/K600_videos"
frame_dir = "/share_io02_hdd/shijiapeng/K600_annotations_24_11/K600_frames"
shot_dir = "/share_io02_hdd/shijiapeng/K600_annotations_24_11/K600_shots"
output_dir = "/share_io02_hdd/shijiapeng/K600_annotations_24_11/K600_tracking"
def img2box(img_path, text):
image = Image.open(img_path).convert("RGB")
# run Grounding DINO on the image
inputs = processor(images=image, text=text, return_tensors="pt").to(device)
with torch.no_grad():
outputs = grounding_model(**inputs)
results = processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=0.4, #0.4
text_threshold=0.3, #0.3
target_sizes=[image.size[::-1]]
)
# process the detection results
input_boxes = results[0]["boxes"].cpu().numpy()
# print("results[0]",results[0])
objects = results[0]["labels"]
return input_boxes, objects
def box2mask(img_path, input_boxes):
image = Image.open(img_path).convert("RGB")
# prompt SAM image predictor to get the mask for the object
image_predictor.set_image(np.array(image.convert("RGB")))
# prompt SAM 2 image predictor to get the mask for the object
masks, scores, logits = image_predictor.predict(
point_coords=None,
point_labels=None,
box=input_boxes,
multimask_output=False,
)
# convert the mask shape to (n, H, W)
if masks.ndim == 2:
masks = masks[None]
scores = scores[None]
logits = logits[None]
elif masks.ndim == 4:
masks = masks.squeeze(1)
return masks
def calculate_iou(box1, box2):
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
intersection_area = max(0, x2 - x1) * max(0, y2 - y1)
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
iou = intersection_area/(box1_area + box2_area - intersection_area)
return iou
vid_path = "/share_io02_hdd/shijiapeng/K600_annotations_24_11/vid.json"
with open(vid_path, "r", encoding='utf-8') as f:
vid_list = json.load(f)
random.shuffle(vid_list)
for vid in vid_list:
#vid = "00SfeRtiM2o"
#vid = "kMy-6RtoOVU"
#vid = "5iYKpJGole4_000096_000106"
#vid = "zlVkeKC6Ha8"
#vid = "kMy-6RtoOVU"
video_path = os.path.join(video_dir, vid+".mp4")
frame_path = os.path.join(frame_dir, vid)
shot_path = os.path.join(shot_dir, vid+".json")
with open(shot_path, "r", encoding='utf-8') as f:
shot_points = json.load(f)
output_path = os.path.join(output_dir, vid)
output_video_path = os.path.join(output_path, vid+"_tracking.mp4")
if os.path.exists(output_path):
print(vid, "exists.")
continue
# create the output directory
mask_data_dir = os.path.join(output_path, "mask_data")
json_data_dir = os.path.join(output_path, "json_data")
result_dir = os.path.join(output_path, "result")
CommonUtils.creat_dirs(mask_data_dir)
CommonUtils.creat_dirs(json_data_dir)
"""
Custom video input directly using video files
"""
video_info = sv.VideoInfo.from_video_path(video_path) # get video info
print(video_info)
width = video_info.width
height = video_info.height
#frame_rate = video_info.fps
cap = cv2.VideoCapture(video_path)
frame_rate = cap.get(cv2.CAP_PROP_FPS)
# scan all the JPEG frame names in this directory
all_frame_names = [
p for p in os.listdir(frame_path)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG", ".png", ".PNG"]
]
all_frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
#sam2_masks = MaskDictionaryModel()
PROMPT_TYPE_FOR_VIDEO = "mask" # box, mask or point
#objects_count = 0
print(vid ,"start time: ", time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
for [st, ed] in shot_points:
start_frame_inall = round(st*frame_rate)
end_frame_inall = round(ed*frame_rate)
start_frame = (start_frame_inall+end_frame_inall)//2
print("start_frame_inall", start_frame_inall, end_frame_inall+1)
frame_names = all_frame_names[start_frame_inall: end_frame_inall+1]
text = concatenated_text
# init video predictor state
inference_state = video_predictor.init_state(video_path=frame_path, start_frame=start_frame_inall+1, end_frame=end_frame_inall+1)
step_forward = end_frame_inall-start_frame+1
step_backward = start_frame-start_frame_inall+1
print("frame_names", frame_names[start_frame])
print("forward", step_forward, "backward", step_backward)
img_path = os.path.join(frame_path, frame_names[start_frame])
image_base_name = frame_names[start_frame].split(".")[0]
#mask_dict_gdino
mask_dict = MaskDictionaryModel(promote_type = PROMPT_TYPE_FOR_VIDEO, mask_name = f"mask_{image_base_name}.npy")
# gdino box
input_boxes, objects = img2box(img_path, text)
gdino_dict = {
"input_boxes": input_boxes,
"objects": objects
}
try:
masks = box2mask(img_path, input_boxes)
except Exception:
print("input_boxes", input_boxes)
print("No object detected in the frame, skip the frame {}".format(start_frame))
continue
"""
Step 3: Register each object's positive points to video predictor
"""
#print(masks, input_boxes, objects)
# If you are using point prompts, we uniformly sample positive points based on the mask
if mask_dict.promote_type == "mask":
mask_dict.add_new_frame_annotation(mask_list=torch.tensor(masks).to(device), box_list=torch.tensor(input_boxes), label_list=objects)
else:
raise NotImplementedError("SAM 2 video predictor only support mask prompts")
"""
Step 4: Propagate the video predictor to get the segmentation results for each frame
"""
if len(mask_dict.labels) == 0:
print("No object detected in the frame, skip the frame {}".format(start_frame))
continue
video_predictor.reset_state(inference_state)
for object_id, object_info in mask_dict.labels.items():
frame_idx, out_obj_ids, out_mask_logits = video_predictor.add_new_mask(
inference_state,
start_frame,
object_id,
object_info.mask,
)
video_segments = {} # output the following {step} frames tracking masks
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state, max_frame_num_to_track=step_forward, start_frame_idx=start_frame):
frame_masks = MaskDictionaryModel()
for i, out_obj_id in enumerate(out_obj_ids):
out_mask = (out_mask_logits[i] > 0.0) # .cpu().numpy()
object_info = ObjectInfo(instance_id = out_obj_id, mask = out_mask[0], class_name = mask_dict.get_target_class_name(out_obj_id), logit=mask_dict.get_target_logit(out_obj_id))
object_info.update_box()
frame_masks.labels[out_obj_id] = object_info
image_base_name = frame_names[out_frame_idx].split(".")[0]
frame_masks.mask_name = f"mask_{image_base_name}.npy"
frame_masks.mask_height = out_mask.shape[-2]
frame_masks.mask_width = out_mask.shape[-1]
video_segments[out_frame_idx] = frame_masks
#sam2_masks = copy.deepcopy(frame_masks) # maybe can't find object that dismissed in the middle time
#print("video_segments:", len(video_segments))
"""
Step 5: save the tracking masks and json files
"""
for frame_idx, frame_masks_info in video_segments.items():
mask = frame_masks_info.labels
mask_img = torch.zeros(frame_masks_info.mask_height, frame_masks_info.mask_width)
for obj_id, obj_info in mask.items():
mask_img[obj_info.mask == True] = obj_id
mask_img = mask_img.numpy().astype(np.uint16)
np.save(os.path.join(mask_data_dir, frame_masks_info.mask_name), mask_img)
json_data_path = os.path.join(json_data_dir, frame_masks_info.mask_name.replace(".npy", ".json"))
#print(frame_masks_info)
frame_masks_info.to_json(json_data_path) # 此处json文件无法保存mask这种tensor张量
reverse = True
if reverse:
print("try reverse tracking")
#start_object_id = 0
object_info_dict = {}
print("reverse tracking frame", start_frame, frame_names[start_frame])
if start_frame != 0:
video_predictor.reset_state(inference_state)
image_base_name = frame_names[start_frame].split(".")[0]
json_data_path = os.path.join(json_data_dir, f"mask_{image_base_name}.json")
json_data = MaskDictionaryModel().from_json(json_data_path)
mask_data_path = os.path.join(mask_data_dir, f"mask_{image_base_name}.npy")
mask_array = np.load(mask_data_path, allow_pickle=True)
#for object_id in range(start_object_id+1, current_object_count+1):
for object_id in json_data.labels.keys():
print("reverse tracking object", object_id)
object_info_dict[object_id] = json_data.labels[object_id]
video_predictor.add_new_mask(inference_state, start_frame, object_id, mask_array == object_id)
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state, max_frame_num_to_track=step_backward, start_frame_idx=start_frame, reverse=True):
image_base_name = frame_names[out_frame_idx].split(".")[0]
json_data_path = os.path.join(json_data_dir, f"mask_{image_base_name}.json")
mask_data_path = os.path.join(mask_data_dir, f"mask_{image_base_name}.npy")
if os.path.exists(json_data_path):
json_data = MaskDictionaryModel().from_json(json_data_path)
mask_array = np.load(mask_data_path, allow_pickle=True)
else:
json_data = MaskDictionaryModel(promote_type = PROMPT_TYPE_FOR_VIDEO, mask_name = f"mask_{image_base_name}.npy")
mask_array = None
#json_data.add_new_frame_annotation(mask_list=torch.tensor(masks).to(device), box_list=torch.tensor(input_boxes), label_list=OBJECTS)
# merge the reverse tracking masks with the original masks
have_obj = False
track_obj_ids = []
for i, out_obj_id in enumerate(out_obj_ids):
out_mask = (out_mask_logits[i] > 0.0).cpu()
if out_mask.sum() == 0:
print("no mask for object", out_obj_id, "at frame", out_frame_idx)
continue
object_info = object_info_dict[out_obj_id]
object_info.mask = out_mask[0]
object_info.update_box()
object_box = [object_info.x1, object_info.y1, object_info.x2, object_info.y2]
has_been_tracked = False
for history_id, history_info in json_data.labels.items():
history_box = [history_info.x1, history_info.y1, history_info.x2, history_info.y2]
#if calculate_iou(history_box, object_box)>0.7:
if history_id==out_obj_id or calculate_iou(history_box, object_box)>0.7:
has_been_tracked = True
break
if has_been_tracked:
print("object has been tracked", out_obj_id, "at frame", out_frame_idx)
continue
have_obj = True
track_obj_ids.append(out_obj_id)
json_data.labels[out_obj_id] = object_info
json_data.mask_height = out_mask.shape[-2]
json_data.mask_width = out_mask.shape[-1]
if mask_array is None:
mask_array = np.zeros((json_data.mask_height, json_data.mask_width))
mask_array = np.where(mask_array != out_obj_id, mask_array, 0)
mask_array[object_info.mask] = out_obj_id
if have_obj:
print(json_data_path, track_obj_ids)
np.save(mask_data_path, mask_array)
json_data.to_json(json_data_path)
elif out_frame_idx==start_frame:
continue
else:
break
CommonUtils.draw_masks_and_box_with_supervision(frame_path, mask_data_dir, json_data_dir, result_dir)
create_video_from_images(result_dir, output_video_path, frame_rate=frame_rate)
print(vid, "end time: ", time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))