-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
81 lines (61 loc) · 2.73 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
import cv2
import numpy as np
def draw_texts(img, texts, offset_x=10, offset_y=0, font_scale=0.7, thickness=2, color=(0, 0, 255)):
h, w, c = img.shape
texts = [texts] if type(texts) == str else texts
for i, text in enumerate(texts):
cv2.putText(img, text, (offset_x, offset_y), cv2.FONT_HERSHEY_SIMPLEX,
font_scale, color, thickness, cv2.LINE_AA)
def detection_fasterrcnn(img_path, finetune=False):
torch.cuda.empty_cache()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# load a model pre-trained pre-trained on COCO
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
# replace the classifier with a new one, that has
# num_classes which is user-defined
if finetune:
num_classes = 2 # 1 class (person) + background
# get number of input features for the classifier
in_features = model.roi_heads.box_predictor.cls_score.in_features
# replace the pre-trained head with a new one
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
model = model.to(device)
model.eval()
print(model)
# load color image
img = cv2.imread(img_path)
img_tr = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_tr = np.transpose(img_tr, (2, 0, 1)).astype(np.float32) / 255.0
# print(img.shape)
t = torch.from_numpy(img_tr).to(device)
t = t.unsqueeze(0)
with torch.no_grad():
out = model(t)
# print(out)
boxes = out[0]["boxes"].data.cpu().numpy()
scores = out[0]["scores"].data.cpu().numpy()
labels = out[0]["labels"].data.cpu().tolist()
category = {0: 'background', 1: 'person', 2: 'traffic light', 3: 'train', 4: 'traffic sign', 5: 'rider',
6: 'car', 7: 'bike', 8: 'motor', 9: 'truck', 10: 'bus'}
boxes = boxes[scores >= 0.5].astype(np.int32)
pnum = 0
for i, box in enumerate(boxes):
cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), (255, 0, 0), thickness=2)
if labels[i] == 1:
draw_texts(img, 'person '+str(round(scores[i], 3)), offset_x=box[0], offset_y=box[1])
pnum += 1
draw_texts(img, 'people: '+str(pnum), offset_x=10, offset_y=20, color=(0, 255, 0))
cv2.imshow("result", img)
cv2.waitKey(0)
if __name__ == '__main__':
import pathlib
import random
base_path = pathlib.Path('./samples')
img_path_list = list(base_path.glob('*.jpg'))
idx = random.randint(0, len(img_path_list) - 1)
print(img_path_list[idx])
detection_fasterrcnn(img_path=str(img_path_list[idx]))