-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtask_sampler.py
445 lines (380 loc) · 17.2 KB
/
task_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import os
import random
import itertools
import json
import collections
import logging
import sys
from typing import Optional, Union
from datasets import load_dataset
import json
import copy
import numpy as np
from utils_longbench import get_score
def merge_list_of_dicts(dicts, other_dicts):
assert len(dicts) == len(other_dicts)
new_dicts = [{**d1, **d2} for d1, d2 in zip(dicts, other_dicts)]
return new_dicts
class TaskSampler():
def __init__(
self,
tasks, # list of tasks to load
metrics, # list of metrics per task
training_tasks_subset: Optional[list] = None,
test_tasks_subset: Optional[list] = None,
store_gen_outputs: bool = False,
store_gen_outputs_path: Optional[str] = None,
):
self.store_gen_outputs = store_gen_outputs
if store_gen_outputs_path is not None:
assert store_gen_outputs
elif store_gen_outputs:
store_gen_outputs_path = 'generated_outputs/temp/'
self.store_gen_outputs_path = store_gen_outputs_path
if store_gen_outputs:
if not os.path.exists(store_gen_outputs_path):
os.makedirs(store_gen_outputs_path)
if type(tasks) == str:
tasks = [tasks]
else:
tasks = list(tasks)
if type(metrics) == str:
metrics = [metrics for _ in tasks]
else:
metrics = list(metrics)
assert len(metrics) == len(tasks)
self.lb_tasks = []
self.lb_metrics = []
self.lb_datasets = []
for t, m in zip(tasks, metrics):
if t.startswith('lb/'):
self.add_long_bench_task(task=t, metric=m)
elif t.startswith('choubun/'):
self.add_choubun_task(task=t, metric=m)
else:
raise NotImplementedError
self.training_tasks_subset = training_tasks_subset or tasks
self.test_tasks_subset = test_tasks_subset or tasks
self.prefetched_task_tensors = {t: None for t in tasks}
self.loaded_cached_model_data = False
self.cached_per_task_stats = {}
self.init_tasks()
def get_cached_per_task_stats(self, reset=True) -> dict:
cached_per_task_stats = copy.deepcopy(self.cached_per_task_stats)
if reset:
self.cached_per_task_stats = {}
return cached_per_task_stats
def add_long_bench_task(self, task, metric):
bench_name, task_name = task.split('/')
assert bench_name == 'lb'
dataset = load_dataset('THUDM/LongBench', task_name, split='test')
self.lb_datasets.append(dataset)
self.lb_tasks.append(task)
self.lb_metrics.append(metric)
def add_choubun_task(self, task, metric):
bench_name, task_name = task.split('/')
assert bench_name == 'choubun'
dataset = load_dataset('SakanaAI/ChouBun', task_name, split='test')
self.lb_datasets.append(dataset)
self.lb_tasks.append(task)
self.lb_metrics.append(metric)
def init_tasks(self,):
# LongBench
longbench_path = 'LongBench/'
self.lb_task2prompt = json.load(open(
f"{longbench_path}config/dataset2prompt.json", "r"))
self.lb_task2prompt = {'lb/' + t: v
for t, v in self.lb_task2prompt.items()}
self.lb_task2maxlen = json.load(open(
f"{longbench_path}config/dataset2maxlen.json", "r"))
self.lb_task2maxlen = {'lb/' + t: v
for t, v in self.lb_task2maxlen.items()}
self.lb_taskstopgen = {t: [] for t in self.lb_task2maxlen}
self.lb_taskstopgen["lb/samsum"].append('\n')
# ChouBun
choubun_path = 'ChouBun/'
choubun_task2prompt = json.load(open(
f"{choubun_path}config/dataset2prompt.json", "r"))
choubun_task2prompt = {'choubun/' + t: v
for t, v in choubun_task2prompt.items()}
choubun_task2maxlen = json.load(open(
f"{choubun_path}config/dataset2maxlen.json", "r"))
choubun_task2maxlen = {'choubun/' + t: v
for t, v in choubun_task2maxlen.items()}
choubun_taskstopgen = {t: [] for t in choubun_task2maxlen}
self.lb_task2prompt.update(choubun_task2prompt)
self.lb_task2maxlen.update(choubun_task2maxlen)
self.lb_taskstopgen.update(choubun_taskstopgen)
self.lb_dataset_per_task = {t: d for t, d in zip(
self.lb_tasks, self.lb_datasets)}
# unpacked utils
self.lb_jsons_per_task = {t: [p for p in d] for t, d in zip(
self.lb_tasks, self.lb_datasets)}
self.lb_prompts_per_task = {}
for task, jsons in self.lb_jsons_per_task.items():
prompt_format = self.lb_task2prompt[task]
self.lb_prompts_per_task[task] = []
for json_file in jsons:
prompt = prompt_format.format(**json_file)
self.lb_prompts_per_task[task].append(prompt)
self.num_prompts_per_lb_task = {k: len(
ps) for k, ps in self.lb_prompts_per_task.items()}
self.latest_sampled_idxs_per_lb_task = None
self.latest_lb_tasks_names = None
self.lb_training_tasks = [t for t in self.lb_tasks
if t in self.training_tasks_subset]
self.lb_test_tasks = [t for t in self.lb_tasks
if t in self.test_tasks_subset]
def resample_requests(self, train: bool,
sampled_requests_per_task: Optional[int] = None,
task_batch_size: Optional[int] = None,
) -> None:
self.resample_requests_lb(
train=train,
sampled_requests_per_task=sampled_requests_per_task,
task_batch_size=task_batch_size)
def set_requests_per_task(self, requests_dict):
self.latest_lb_tasks_names = []
self.latest_sampled_idxs_per_lb_task = {}
for task_n, task_idxs in requests_dict.items():
if task_n in self.lb_tasks:
self.latest_lb_tasks_names.append(task_n)
self.latest_sampled_idxs_per_lb_task.update(
{task_n: task_idxs})
else:
raise ValueError(
'Invalid task name passed when setting task idxs')
def get_requests_per_task(self,):
out_dict = {}
out_dict.update(self.latest_sampled_idxs_per_lb_task)
return out_dict
def resample_requests_lb(self, train: bool,
sampled_requests_per_task: Optional[int] = None,
task_batch_size: Optional[int] = None,
) -> None:
if train:
tasks_subset = self.lb_training_tasks
else:
tasks_subset = self.lb_test_tasks
if tasks_subset is not None:
num_tasks = len(tasks_subset)
self.latest_lb_tasks_names = tasks_subset
else:
self.latest_lb_tasks_names = self.lb_tasks
num_tasks = self.num_lb_tasks
if task_batch_size is not None and num_tasks > 0:
tasks_idxs = np.random.choice(num_tasks, replace=False,
size=task_batch_size)
self.latest_lb_tasks_names = [self.latest_lb_tasks_names[i]
for i in tasks_idxs]
tasks_names = self.latest_lb_tasks_names
sampled_idxs_per_lb_task = {}
for task_n in tasks_names:
num_task_prompts = self.num_prompts_per_lb_task[task_n]
if sampled_requests_per_task is not None:
sampled_idxs = np.random.choice(
num_task_prompts, replace=False,
size=sampled_requests_per_task)
else:
sampled_idxs = np.arange(num_task_prompts)
sampled_idxs_per_lb_task[task_n] = sampled_idxs
self.latest_sampled_idxs_per_lb_task = sampled_idxs_per_lb_task
def evaluate(
self,
lm,
train: bool,
evolved_model: bool,
pop_reps: int = 1,
pop_idxs: Optional[np.array] = None,
resample_requests: bool = True,
sampled_requests_per_task: Optional[int] = None,
task_batch_size: Optional[int] = None,
limit: Optional[int] = None,
replicate_requests: Optional[int] = None,
build_chat_interface: bool = False,
performance_per_request: bool = False,
cache_param_stats_per_task: bool = False,
model_kwargs: dict = {},
):
out_dicts = [{} for _ in range(pop_reps)]
if train:
tasks_subset = self.lb_training_tasks
else:
tasks_subset = self.lb_test_tasks
if len(tasks_subset) > 0:
lb_dicts, lb_stats = self.evaluate_lb_tasks_for_pop(
lm=lm,
pop_reps=pop_reps, pop_idxs=pop_idxs,
resample_requests=resample_requests,
sampled_requests_per_task=sampled_requests_per_task,
tasks_subset=tasks_subset, task_batch_size=task_batch_size,
limit=limit, build_chat_interface=build_chat_interface,
performance_per_request=performance_per_request,
cache_param_stats_per_task=cache_param_stats_per_task,
model_kwargs=model_kwargs)
out_dicts = merge_list_of_dicts(out_dicts, lb_dicts)
out_dicts = merge_list_of_dicts(out_dicts, lb_stats)
return out_dicts
def get_latest_sampled_idxs(self, train=True):
lb_tasks_names = self.latest_lb_tasks_names
if train:
tasks_subset = self.lb_training_tasks
else:
tasks_subset = self.lb_test_tasks
all_idxs = {}
if lb_tasks_names is not None:
lb_tasks_names = [t_n for t_n in lb_tasks_names
if t_n in tasks_subset]
for task_n in lb_tasks_names:
sampled_idxs = self.latest_sampled_idxs_per_lb_task[task_n]
if sampled_idxs is None:
all_idxs[task_n] = np.arange(
self.num_prompts_per_lb_task[task_n])
else:
all_idxs[task_n] = sampled_idxs
return all_idxs
def evaluate_lb_tasks_for_pop(
self,
lm,
pop_reps: int,
pop_idxs: Optional[np.array] = None,
resample_requests: bool = True,
sampled_requests_per_task: Optional[int] = None,
tasks_subset: Optional[list] = None,
task_batch_size: Optional[int] = None,
# only used for debugging in the absence of sampled_requests_per_task
limit: Optional[int] = None,
use_cached_kv_if_available: bool = True,
build_chat_interface: bool = False,
performance_per_request: bool = False,
cache_param_stats_per_task: bool = False,
model_kwargs: dict = {},
):
stats = [{} for _ in range(pop_reps)]
if resample_requests:
if tasks_subset is not None:
num_tasks = len(tasks_subset)
self.latest_lb_tasks_names = tasks_subset
else:
self.latest_lb_tasks_names = self.lb_tasks
num_tasks = self.num_lb_tasks
if task_batch_size is not None:
tasks_idxs = np.random.choice(num_tasks, replace=False,
size=task_batch_size)
self.latest_lb_tasks_names = [self.latest_lb_tasks_names[i]
for i in tasks_idxs]
model_kwargs = dict(pop_reps=pop_reps, pop_idxs=pop_idxs,
model_kwargs=model_kwargs)
tasks_names = self.latest_lb_tasks_names
sampled_idxs_per_lb_task = {}
sampled_task_prompts = {}
sampled_task_jsons = {}
for task_n in tasks_names:
task_prompts = self.lb_prompts_per_task[task_n]
task_jsons = self.lb_jsons_per_task[task_n]
if not resample_requests:
sampled_idxs = self.latest_sampled_idxs_per_lb_task[task_n]
prompts = [task_prompts[i] for i in sampled_idxs]
jsons = [task_jsons[i] for i in sampled_idxs]
elif sampled_requests_per_task is not None:
sampled_idxs = np.random.choice(
len(task_prompts), replace=False,
size=sampled_requests_per_task)
prompts = [task_prompts[i] for i in sampled_idxs]
jsons = [task_jsons[i] for i in sampled_idxs]
else:
sampled_idxs = None
if limit is not None:
prompts = task_prompts[:limit]
jsons = task_jsons[:limit]
else:
prompts = task_prompts
jsons = task_jsons
sampled_idxs_per_lb_task[task_n] = sampled_idxs
sampled_task_jsons[task_n] = jsons
sampled_task_prompts[task_n] = prompts
self.latest_sampled_idxs_per_lb_task = sampled_idxs_per_lb_task
resps_per_task = {}
pop_task_scores = [{} for _ in range(pop_reps)]
if performance_per_request:
for pop_i in range(pop_reps):
stats[pop_i]['performance_per_request'] = {}
for task_n, prompts in sampled_task_prompts.items():
if (self.prefetched_task_tensors[task_n] is not None
and use_cached_kv_if_available):
raise NotImplementedError
build_chat_interface_for_task = False
if build_chat_interface:
dataset_n = task_n.split('/')[1]
if dataset_n not in ["trec", "triviaqa", "samsum", "lsht",
"lcc", "repobench-p"]:
build_chat_interface_for_task = True
all_classes = None
jsons = sampled_task_jsons[task_n]
task_kwargs = dict(
max_gen_tokens=self.lb_task2maxlen[task_n],
stop_gen=self.lb_taskstopgen[task_n],
build_chat_interface=build_chat_interface_for_task)
task_outputs = lm.evaluate_lb(dataset_samples=prompts,
**task_kwargs, **model_kwargs)
task_outputs = task_outputs
n_task_outputs = len(task_outputs)
n_outputs_per_pop_idx = n_task_outputs // pop_reps
assert n_outputs_per_pop_idx == len(jsons)
task_ouputs_per_pop_idx = [
task_outputs[i:i + n_outputs_per_pop_idx]
for i in range(0, n_task_outputs, n_outputs_per_pop_idx)]
dicts_to_store = []
has_length = False
for j in range(pop_reps):
prediction_list, answers_list, length_list = [], [], []
for i, (json_obj, prompt) in enumerate(zip(jsons, prompts)):
all_classes = json_obj["all_classes"]
answers = json_obj["answers"]
if "length" in json_obj:
length = json_obj["length"]
has_length = True
else:
length = -1
assert not has_length
pred = task_ouputs_per_pop_idx[j][i]
prediction_list.append(pred)
answers_list.append(answers)
length_list.append(length)
if self.store_gen_outputs:
prompt_dict = dict(
pred=pred,
answers=answers,
all_classes=all_classes,
length=length,
)
if pop_idxs is not None:
prompt_dict['pop_idx'] = pop_idxs[j]
dicts_to_store.append(prompt_dict)
score, all_scores = get_score(
task=task_n[task_n.index('/') + 1:], # strip task prefix
predictions=prediction_list,
answers=answers_list,
all_classes=all_classes)
pop_task_scores[j][task_n] = score
if performance_per_request:
if sampled_idxs_per_lb_task[task_n] is None:
if limit is None:
sampled_prompt_idxs = list(range(len(all_scores)))
else:
sampled_prompt_idxs = list(range(limit))
else:
sampled_prompt_idxs = sampled_idxs_per_lb_task[task_n]
assert (len(sampled_prompt_idxs) ==
len(all_scores))
stats[j]['performance_per_request'][task_n] = {
prompt_idx: prompt_score for prompt_idx, prompt_score in
zip(sampled_prompt_idxs, all_scores)}
if cache_param_stats_per_task:
memory_policy_stats = lm.model.get_param_stats()
for k, v in memory_policy_stats.items():
self.cached_per_task_stats[
f'{task_n[task_n.index("/") + 1:]}/' + k] = v
if self.store_gen_outputs:
pass
return pop_task_scores, stats