This repository has been archived by the owner on Aug 12, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLoader.py
300 lines (259 loc) · 10.9 KB
/
Loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import csv
import math
import os
import shutil
from copy import deepcopy
import cv2
import numpy as np
import torch
from matplotlib import pyplot
from skimage import morphology as mp
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import Dataset
from torch.utils.tensorboard import SummaryWriter
class TestDataSet(Dataset):
def __init__(self,rootDir = "Test",prePorcess = True) -> None:
self.rootDir = rootDir
self.charDict,self.rCharDict = self.__getDict("Train/dictionary.txt") #字典映射表,标签需要重映射成连续数组
super().__init__()
# 生成文件列表
self.FileList = []
with open(f"{self.rootDir}/data.csv",mode="r",encoding="utf8") as csvFile:
reader = csv.reader(csvFile)
next(reader) #读掉表头
for row in reader:
if(row[5] == 'FALSE'): #不忽略文本
self.FileList.append((f"{self.rootDir}/data/{row[0]}_{row[1]}_{row[2]}_{row[3]}_{row[4]}.png",self.charDict[ord(row[6])]))
self.lenFileList = len(self.FileList);i = 0
if(prePorcess == True):
# 预处理,放在临时文件夹里
shutil.rmtree(f"Temp/{self.rootDir}",ignore_errors=True)
if(f"Temp/{rootDir}" not in os.listdir("Temp")):
os.makedirs(f"Temp/{rootDir}/data")
for file in self.FileList:
print(f"\r{file[0]}",flush=True,end="")
img = cv2.imread(file[0],flags=0)
img = self.__imgPreprocess(img) #实际预处理代码
cv2.imwrite(f"Temp/{file[0]}",img)
i+=1
# print(f"\r预处理数据集\"{rootDir}\"中,进度{i / self.lenFileList * 100:.2f}%",flush=True,end="")
def __getDict(self,dictDir:str):
dictMap = {}
rDictMap = {}
with open(dictDir,"r",newline="",encoding="ascii") as fp:
chars = list(fp.readline())
for i in range(len(chars)):
dictMap[ord(chars[i])] = i
rDictMap[i] = ord(chars[i])
return (dictMap,rDictMap)
def __imgPreprocess(self,img):
img = cv2.medianBlur(img,3) #中值滤波
#img = mp.opening(img)
img = cv2.normalize(img,None,0,255,cv2.NORM_MINMAX)
img = cv2.threshold(img,0,255,cv2.THRESH_TOZERO+cv2.THRESH_OTSU)[1]
img = self.__imgCut(img) #图像裁切
img = cv2.resize(img,(56,56),interpolation=cv2.INTER_LINEAR) #缩放
zeroImg = np.zeros((64,64),dtype="uint8"); zeroImg[4:-4,4:-4] = img
img = zeroImg #填充图像
return img
def __imgCut(self,img):
nanImg = np.where(img == 0,np.nan,img)
t = np.nanmin(nanImg);del(nanImg)
minLen = min(img.shape[0],img.shape[1])
openCrSz = max(minLen // 24,1)
closCrSz = max(minLen // 12,1)
referImg = cv2.copyMakeBorder(img,openCrSz,openCrSz,openCrSz,openCrSz,cv2.BORDER_CONSTANT,value=0)
referImg = cv2.threshold(referImg,t,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
referImg = referImg == 255
referImg = mp.binary_opening(referImg,mp.square(openCrSz)) #使用开运算的图像作为裁剪参考
referImg = mp.binary_closing(referImg,mp.square(closCrSz)) #闭运算连接笔画
referImg = mp.remove_small_objects(referImg,min_size=int(referImg.size * 0.05))
referImg = referImg[openCrSz:-openCrSz,openCrSz:-openCrSz] #去除填充的部分
referImg = (referImg * 255).astype("uint8")
# 矩形框裁剪
edge = [0, 0, 0, 0]
for i in range(0, referImg.shape[0]):
if (referImg[i].max() > t):
edge[0] = max(0, i)
break
for i in range(referImg.shape[0] - 1, -1, -1):
if (referImg[i].max() > t):
edge[1] = min(referImg.shape[0], i + 1)
break
for i in range(0, referImg.shape[1]):
if (referImg[:, i].max() > t):
edge[2] = max(0, i)
break
for i in range(referImg.shape[1] - 1, -1, -1):
if (referImg[:, i].max() > t):
edge[3] = min(referImg.shape[1], i + 1)
break
#判断裁切框尺寸,小于16x16需要钳制到对应范围
if((edge[3]-edge[2]) < 16):
wd = edge[3]-edge[2];
wdMid = edge[2] + (edge[3]-edge[2]) / 2
edge[2] = int(round(wdMid - 8));edge[3] = int(round(wdMid + 8))
if((edge[1]-edge[0]) < 16):
ht = edge[1] - edge[0]
htMid = edge[0] + (edge[1]-edge[0]) / 2
edge[0] = int(round(htMid - 8));edge[1] = int(round(htMid + 8))
#判断裁切框比例,宽高比小于0.4:1和大于1.2:1需要钳制
if((edge[3]-edge[2]) / (edge[1]-edge[0]) < 0.4):
ht = edge[1]-edge[0]; wd = ht * 0.4
wdMid = edge[2] + (edge[3]-edge[2]) / 2
edge[2] = int(round(wdMid - wd / 2)); edge[3] = int(round(wdMid + wd / 2))
elif((edge[3]-edge[2]) / (edge[1]-edge[0]) > 1.2):
wd = edge[3]-edge[2]; ht = wd / 1.2
htMid = edge[0] + (edge[1]-edge[0]) / 2
edge[0] = int(round(htMid - ht / 2)); edge[1] = int(round(htMid + ht / 2))
#裁切框出界处理
if(edge[0] < 0):
zeroImg = np.zeros((img.shape[0]-edge[0],img.shape[1]),dtype="uint8")
zeroImg[-edge[0]:,:] = img
img = zeroImg
edge[1] = edge[1] - edge[0]
edge[0] = 0
if(edge[1] >= img.shape[0]):
zeroImg = np.zeros((edge[1],img.shape[1]),dtype="uint8")
zeroImg[:img.shape[0],:] = img
img = zeroImg
if(edge[2] < 0):
zeroImg = np.zeros((img.shape[0],img.shape[1]-edge[2]),dtype="uint8")
zeroImg[:, -edge[2]:] = img
img = zeroImg
edge[3] = edge[3] - edge[2]
edge[2] = 0
if(edge[3] >= img.shape[1]):
zeroImg = np.zeros((img.shape[0],edge[3]),dtype="uint8")
zeroImg[:, :img.shape[1]] = img
img = zeroImg
#裁切
img = img[edge[0]:edge[1],edge[2]:edge[3]]
return img
def __getitem__(self, index):
img = cv2.imread(f"Temp/{self.FileList[index][0]}",flags=cv2.IMREAD_GRAYSCALE)
img = torch.from_numpy(img) #从numpy转换成张量(用来部署到显卡)
img = img.unsqueeze(0)
img = img.repeat_interleave(3,0)
return img.float(), self.FileList[index][1]
def __len__(self):
return self.lenFileList
class CharDataSet(Dataset):
def __init__(self,rootDir,prePorcess = True) -> None:
self.rootDir = rootDir
self.charDict,self.rCharDict = self.__getDict("Train/dictionary.txt") #字典映射表,标签需要重映射成连续数组
super().__init__()
# 生成文件列表
self.FileList = []
with open(f"{self.rootDir}/data.csv",mode="r",encoding="utf8") as csvFile:
reader = csv.reader(csvFile)
next(reader) #读掉表头
for row in reader:
self.FileList.append((f"{self.rootDir}/data/char_{row[0]}_{row[1]}_{row[2]}.png",self.charDict[int(row[0])]))
self.lenFileList = len(self.FileList);i = 0
if(prePorcess == True):
# 预处理,放在临时文件夹里
shutil.rmtree(f"Temp/{self.rootDir}",ignore_errors=True)
if(f"Temp/{rootDir}" not in os.listdir("Temp")):
os.makedirs(f"Temp/{rootDir}/data")
for file in self.FileList:
img = cv2.imread(file[0],flags=0)
img = self.__imgPreprocess(img) #实际预处理代码
cv2.imwrite(f"Temp/{file[0]}",img)
i+=1
print(f"\r预处理数据集\"{rootDir}\"中,进度{i / self.lenFileList * 100:.2f}%",flush=True,end="")
def __getDict(self,dictDir:str):
dictMap = {}
rDictMap = {}
with open(dictDir,"r",newline="",encoding="ascii") as fp:
chars = list(fp.readline())
for i in range(len(chars)):
dictMap[ord(chars[i])] = i
rDictMap[i] = ord(chars[i])
return (dictMap,rDictMap)
def __imgPreprocess(self,img):
img = cv2.normalize(img,None,0,255,cv2.NORM_MINMAX)
#img = cv2.threshold(img,0,255,cv2.THRESH_TOZERO+cv2.THRESH_OTSU)[1]
img = self.__imgCut(img) #图像裁切
img = cv2.resize(img,(56,56),interpolation=cv2.INTER_LINEAR) #缩放
emptyImg = np.zeros((64,64),dtype="uint8"); emptyImg[4:-4,4:-4] = img
img = emptyImg #填充
return img
def __imgCut(self,img):
nanImg = np.where(img == 0,np.nan,img)
t = np.nanmin(nanImg)
# 参考图像
referImg = cv2.threshold(img,t,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)[1]
# 矩形框裁剪
edge = [0, 0, 0, 0]
for i in range(0, referImg.shape[0]):
if (referImg[i].max() > t):
edge[0] = max(0, i)
break
for i in range(referImg.shape[0] - 1, -1, -1):
if (referImg[i].max() > t):
edge[1] = min(referImg.shape[0], i + 1)
break
for i in range(0, referImg.shape[1]):
if (referImg[:, i].max() > t):
edge[2] = max(0, i)
break
for i in range(referImg.shape[1] - 1, -1, -1):
if (referImg[:, i].max() > t):
edge[3] = min(referImg.shape[1], i + 1)
break
#判断裁切框尺寸,小于16x16需要钳制到对应范围
if((edge[3]-edge[2]) < 16):
wd = edge[3]-edge[2];
wdMid = edge[2] + (edge[3]-edge[2]) / 2
edge[2] = int(round(wdMid - 8));edge[3] = int(round(wdMid + 8))
if((edge[1]-edge[0]) < 16):
ht = edge[1] - edge[0]
htMid = edge[0] + (edge[1]-edge[0]) / 2
edge[0] = int(round(htMid - 8));edge[1] = int(round(htMid + 8))
#判断裁切框比例,宽高比小于0.4:1和大于1.2:1需要钳制
if((edge[3]-edge[2]) / (edge[1]-edge[0]) < 0.4):
ht = edge[1]-edge[0]; wd = ht * 0.4
wdMid = edge[2] + (edge[3]-edge[2]) / 2
edge[2] = int(round(wdMid - wd / 2)); edge[3] = int(round(wdMid + wd / 2))
elif((edge[3]-edge[2]) / (edge[1]-edge[0]) > 1.2):
wd = edge[3]-edge[2]; ht = wd / 1.2
htMid = edge[0] + (edge[1]-edge[0]) / 2
edge[0] = int(round(htMid - ht / 2)); edge[1] = int(round(htMid + ht / 2))
#裁切框出界处理
if(edge[0] < 0):
zeroImg = np.zeros((referImg.shape[0]-edge[0],referImg.shape[1]),dtype="uint8")
zeroImg[-edge[0]:,:] = referImg
referImg = zeroImg
edge[1] = edge[1] - edge[0]
edge[0] = 0
if(edge[1] >= referImg.shape[0]):
zeroImg = np.zeros((edge[1],referImg.shape[1]),dtype="uint8")
zeroImg[:referImg.shape[0],:] = referImg
referImg = zeroImg
if(edge[2] < 0):
zeroImg = np.zeros((referImg.shape[0],referImg.shape[1]-edge[2]),dtype="uint8")
zeroImg[:, -edge[2]:] = referImg
referImg = zeroImg
edge[3] = edge[3] - edge[2]
edge[2] = 0
if(edge[3] >= referImg.shape[1]):
zeroImg = np.zeros((referImg.shape[0],edge[3]),dtype="uint8")
zeroImg[:, :referImg.shape[1]] = referImg
referImg = zeroImg
#裁切
img = img[edge[0]:edge[1],edge[2]:edge[3]]
return img
def __getitem__(self, index):
img = cv2.imread(f"Temp/{self.FileList[index][0]}",flags=cv2.IMREAD_GRAYSCALE)
img = torch.from_numpy(img) #从numpy转换成张量(用来部署到显卡)
img = img.unsqueeze(0)
img = img.repeat_interleave(3,0)
return img.float(), self.FileList[index][1]
def __len__(self):
return self.lenFileList
if __name__ == '__main__':
#预处理
trainSet = CharDataSet("Train",prePorcess=True)
verifySet = CharDataSet("Verify",prePorcess=True)
testSet = TestDataSet("Test",prePorcess=True)