forked from mravanelli/pytorch-kaldi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_io.py
947 lines (770 loc) · 32.8 KB
/
data_io.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
##########################################################
# pytorch-kaldi v.0.1
# Mirco Ravanelli, Titouan Parcollet
# Mila, University of Montreal
# October 2018
##########################################################
import numpy as np
import sys
from utils import compute_cw_max,dict_fea_lab_arch,is_sequential_dict
import os
import configparser
import re, gzip, struct
def load_dataset(fea_scp,fea_opts,lab_folder,lab_opts,left,right, max_sequence_length, output_folder, fea_only=False):
fea = { k:m for k,m in read_mat_ark('ark:copy-feats scp:'+fea_scp+' ark:- |'+fea_opts,output_folder) }
if not fea_only:
lab = { k:v for k,v in read_vec_int_ark('gunzip -c '+lab_folder+'/ali*.gz | '+lab_opts+' '+lab_folder+'/final.mdl ark:- ark:-|',output_folder) if k in fea} # Note that I'm copying only the aligments of the loaded fea
fea = {k: v for k, v in fea.items() if k in lab} # This way I remove all the features without an aligment (see log file in alidir "Did not Succeded")
end_snt=0
end_index=[]
snt_name=[]
fea_conc=[]
lab_conc=[]
tmp=0
for k in sorted(sorted(fea.keys()), key=lambda k: len(fea[k])):
#####
# If the sequence length is above the threshold, we split it with a minimal length max/4
# If max length = 500, then the split will start at 500 + (500/4) = 625.
# A seq of length 625 will be splitted in one of 500 and one of 125
if(len(fea[k]) > max_sequence_length) and max_sequence_length>0:
fea_chunked = []
lab_chunked = []
for i in range((len(fea[k]) + max_sequence_length - 1) // max_sequence_length):
if(len(fea[k][i * max_sequence_length:]) > max_sequence_length + (max_sequence_length/4)):
fea_chunked.append(fea[k][i * max_sequence_length:(i + 1) * max_sequence_length])
if not fea_only:
lab_chunked.append(lab[k][i * max_sequence_length:(i + 1) * max_sequence_length])
else:
lab_chunked.append(np.zeros((fea[k][i * max_sequence_length:(i + 1) * max_sequence_length].shape[0],)))
else:
fea_chunked.append(fea[k][i * max_sequence_length:])
if not fea_only:
lab_chunked.append(lab[k][i * max_sequence_length:])
else:
lab_chunked.append(np.zeros((fea[k][i * max_sequence_length:].shape[0],)))
break
for j in range(0, len(fea_chunked)):
fea_conc.append(fea_chunked[j])
lab_conc.append(lab_chunked[j])
snt_name.append(k+'_split'+str(j))
else:
fea_conc.append(fea[k])
if not fea_only:
lab_conc.append(lab[k])
else:
lab_conc.append(np.zeros((fea[k].shape[0],)))
snt_name.append(k)
tmp+=1
fea_zipped = zip(fea_conc,lab_conc)
fea_sorted = sorted(fea_zipped, key=lambda x: x[0].shape[0])
fea_conc,lab_conc = zip(*fea_sorted)
for entry in fea_conc:
end_snt=end_snt+entry.shape[0]
end_index.append(end_snt)
fea_conc=np.concatenate(fea_conc)
lab_conc=np.concatenate(lab_conc)
return [snt_name,fea_conc,lab_conc,np.asarray(end_index)]
def context_window_old(fea,left,right):
N_row=fea.shape[0]
N_fea=fea.shape[1]
frames = np.empty((N_row-left-right, N_fea*(left+right+1)))
for frame_index in range(left,N_row-right):
right_context=fea[frame_index+1:frame_index+right+1].flatten() # right context
left_context=fea[frame_index-left:frame_index].flatten() # left context
current_frame=np.concatenate([left_context,fea[frame_index],right_context])
frames[frame_index-left]=current_frame
return frames
def context_window(fea,left,right):
N_elem=fea.shape[0]
N_fea=fea.shape[1]
fea_conc=np.empty([N_elem,N_fea*(left+right+1)])
index_fea=0
for lag in range(-left,right+1):
fea_conc[:,index_fea:index_fea+fea.shape[1]]=np.roll(fea,lag,axis=0)
index_fea=index_fea+fea.shape[1]
fea_conc=fea_conc[left:fea_conc.shape[0]-right]
return fea_conc
def load_chunk(fea_scp,fea_opts,lab_folder,lab_opts,left,right,max_sequence_length, output_folder,fea_only=False):
# open the file
[data_name,data_set,data_lab,end_index]=load_dataset(fea_scp,fea_opts,lab_folder,lab_opts,left,right, max_sequence_length, output_folder, fea_only)
# Context window
if left!=0 or right!=0:
data_set=context_window(data_set,left,right)
end_index=end_index-left
end_index[-1]=end_index[-1]-right
# mean and variance normalization
data_set=(data_set-np.mean(data_set,axis=0))/np.std(data_set,axis=0)
# Label processing
data_lab=data_lab-data_lab.min()
if right>0:
data_lab=data_lab[left:-right]
else:
data_lab=data_lab[left:]
data_set=np.column_stack((data_set, data_lab))
return [data_name,data_set,end_index]
def load_counts(class_counts_file):
with open(class_counts_file) as f:
row = next(f).strip().strip('[]').strip()
counts = np.array([ np.float32(v) for v in row.split() ])
return counts
def read_lab_fea(cfg_file,fea_only,shared_list,output_folder):
# Reading chunk-specific cfg file (first argument-mandatory file)
if not(os.path.exists(cfg_file)):
sys.stderr.write('ERROR: The config file %s does not exist!\n'%(cfg_file))
sys.exit(0)
else:
config = configparser.ConfigParser()
config.read(cfg_file)
# Reading some cfg parameters
to_do=config['exp']['to_do']
if to_do=='train':
max_seq_length=int(config['batches']['max_seq_length_train']) #*(int(info_file[-13:-10])+1) # increasing over the epochs
if to_do=='valid':
max_seq_length=int(config['batches']['max_seq_length_valid'])
if to_do=='forward':
max_seq_length=-1 # do to break forward sentences
[fea_dict,lab_dict,arch_dict]=dict_fea_lab_arch(config)
[cw_left_max,cw_right_max]=compute_cw_max(fea_dict)
fea_index=0
cnt_fea=0
for fea in fea_dict.keys():
# reading the features
fea_scp=fea_dict[fea][1]
fea_opts=fea_dict[fea][2]
cw_left=int(fea_dict[fea][3])
cw_right=int(fea_dict[fea][4])
cnt_lab=0
# Production case, we don't have labels (lab_name = none)
if fea_only:
lab_dict.update({'lab_name':'none'})
for lab in lab_dict.keys():
# Production case, we don't have labels (lab_name = none)
if fea_only:
lab_folder=None
lab_opts=None
else:
lab_folder=lab_dict[lab][1]
lab_opts=lab_dict[lab][2]
[data_name_fea,data_set_fea,data_end_index_fea]=load_chunk(fea_scp,fea_opts,lab_folder,lab_opts,cw_left,cw_right,max_seq_length, output_folder, fea_only)
# making the same dimenion for all the features (compensating for different context windows)
labs_fea=data_set_fea[cw_left_max-cw_left:data_set_fea.shape[0]-(cw_right_max-cw_right),-1]
data_set_fea=data_set_fea[cw_left_max-cw_left:data_set_fea.shape[0]-(cw_right_max-cw_right),0:-1]
data_end_index_fea=data_end_index_fea-(cw_left_max-cw_left)
data_end_index_fea[-1]=data_end_index_fea[-1]-(cw_right_max-cw_right)
if cnt_fea==0 and cnt_lab==0:
data_set=data_set_fea
labs=labs_fea
data_end_index=data_end_index_fea
data_end_index=data_end_index_fea
data_name=data_name_fea
fea_dict[fea].append(fea_index)
fea_index=fea_index+data_set_fea.shape[1]
fea_dict[fea].append(fea_index)
fea_dict[fea].append(fea_dict[fea][6]-fea_dict[fea][5])
else:
if cnt_fea==0:
labs=np.column_stack((labs,labs_fea))
if cnt_lab==0:
data_set=np.column_stack((data_set,data_set_fea))
fea_dict[fea].append(fea_index)
fea_index=fea_index+data_set_fea.shape[1]
fea_dict[fea].append(fea_index)
fea_dict[fea].append(fea_dict[fea][6]-fea_dict[fea][5])
# Checks if lab_names are the same for all the features
if not(data_name==data_name_fea):
sys.stderr.write('ERROR: different sentence ids are detected for the different features. Plase check again input feature lists"\n')
sys.exit(0)
# Checks if end indexes are the same for all the features
if not(data_end_index==data_end_index_fea).all():
sys.stderr.write('ERROR end_index must be the same for all the sentences"\n')
sys.exit(0)
cnt_lab=cnt_lab+1
cnt_fea=cnt_fea+1
cnt_lab=0
if not fea_only:
for lab in lab_dict.keys():
lab_dict[lab].append(data_set.shape[1]+cnt_lab)
cnt_lab=cnt_lab+1
data_set=np.column_stack((data_set,labs))
# check automatically if the model is sequential
seq_model=is_sequential_dict(config,arch_dict)
# Randomize if the model is not sequential
if not(seq_model) and to_do!='forward':
np.random.shuffle(data_set)
# Split dataset in many part. If the dataset is too big, we can have issues to copy it into the shared memory (due to pickle limits)
#N_split=10
#data_set=np.array_split(data_set, N_split)
# Adding all the elements in the shared list
shared_list.append(data_name)
shared_list.append(data_end_index)
shared_list.append(fea_dict)
shared_list.append(lab_dict)
shared_list.append(arch_dict)
shared_list.append(data_set)
# The following libraries are copied from kaldi-io-for-python project (https://github.com/vesis84/kaldi-io-for-python)
# Copyright 2014-2016 Brno University of Technology (author: Karel Vesely)
# Licensed under the Apache License, Version 2.0 (the "License")
#################################################
# Define all custom exceptions,
class UnsupportedDataType(Exception): pass
class UnknownVectorHeader(Exception): pass
class UnknownMatrixHeader(Exception): pass
class BadSampleSize(Exception): pass
class BadInputFormat(Exception): pass
class SubprocessFailed(Exception): pass
#################################################
# Data-type independent helper functions,
def open_or_fd(file, output_folder,mode='rb'):
""" fd = open_or_fd(file)
Open file, gzipped file, pipe, or forward the file-descriptor.
Eventually seeks in the 'file' argument contains ':offset' suffix.
"""
offset = None
try:
# strip 'ark:' prefix from r{x,w}filename (optional),
if re.search('^(ark|scp)(,scp|,b|,t|,n?f|,n?p|,b?o|,n?s|,n?cs)*:', file):
(prefix,file) = file.split(':',1)
# separate offset from filename (optional),
if re.search(':[0-9]+$', file):
(file,offset) = file.rsplit(':',1)
# input pipe?
if file[-1] == '|':
fd = popen(file[:-1], output_folder,'rb') # custom,
# output pipe?
elif file[0] == '|':
fd = popen(file[1:], output_folder,'wb') # custom,
# is it gzipped?
elif file.split('.')[-1] == 'gz':
fd = gzip.open(file, mode)
# a normal file...
else:
fd = open(file, mode)
except TypeError:
# 'file' is opened file descriptor,
fd = file
# Eventually seek to offset,
if offset != None: fd.seek(int(offset))
return fd
# based on '/usr/local/lib/python3.4/os.py'
def popen(cmd, output_folder,mode="rb"):
if not isinstance(cmd, str):
raise TypeError("invalid cmd type (%s, expected string)" % type(cmd))
import subprocess, io, threading
# cleanup function for subprocesses,
def cleanup(proc, cmd):
ret = proc.wait()
if ret > 0:
raise SubprocessFailed('cmd %s returned %d !' % (cmd,ret))
return
# text-mode,
if mode == "r":
err=open(output_folder+'/log.log',"a")
proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE,stderr=err)
threading.Thread(target=cleanup,args=(proc,cmd)).start() # clean-up thread,
return io.TextIOWrapper(proc.stdout)
elif mode == "w":
err=open(output_folder+'/log.log',"a")
proc = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE,stderr=err)
threading.Thread(target=cleanup,args=(proc,cmd)).start() # clean-up thread,
return io.TextIOWrapper(proc.stdin)
# binary,
elif mode == "rb":
err=open(output_folder+'/log.log',"a")
proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE,stderr=err)
threading.Thread(target=cleanup,args=(proc,cmd)).start() # clean-up thread,
return proc.stdout
elif mode == "wb":
err=open(output_folder+'/log.log',"a")
proc = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE,stderr=err)
threading.Thread(target=cleanup,args=(proc,cmd)).start() # clean-up thread,
return proc.stdin
# sanity,
else:
raise ValueError("invalid mode %s" % mode)
def read_key(fd):
""" [key] = read_key(fd)
Read the utterance-key from the opened ark/stream descriptor 'fd'.
"""
key = ''
while 1:
char = fd.read(1).decode("latin1")
if char == '' : break
if char == ' ' : break
key += char
key = key.strip()
if key == '': return None # end of file,
assert(re.match('^\S+$',key) != None) # check format (no whitespace!)
return key
#################################################
# Integer vectors (alignments, ...),
def read_ali_ark(file_or_fd,output_folder):
""" Alias to 'read_vec_int_ark()' """
return read_vec_int_ark(file_or_fd,output_folder)
def read_vec_int_ark(file_or_fd,output_folder):
""" generator(key,vec) = read_vec_int_ark(file_or_fd)
Create generator of (key,vector<int>) tuples, which reads from the ark file/stream.
file_or_fd : ark, gzipped ark, pipe or opened file descriptor.
Read ark to a 'dictionary':
d = { u:d for u,d in kaldi_io.read_vec_int_ark(file) }
"""
fd = open_or_fd(file_or_fd,output_folder)
try:
key = read_key(fd)
while key:
ali = read_vec_int(fd,output_folder)
yield key, ali
key = read_key(fd)
finally:
if fd is not file_or_fd: fd.close()
def read_vec_int(file_or_fd,output_folder):
""" [int-vec] = read_vec_int(file_or_fd)
Read kaldi integer vector, ascii or binary input,
"""
fd = open_or_fd(file_or_fd,output_folder)
binary = fd.read(2).decode()
if binary == '\0B': # binary flag
assert(fd.read(1).decode() == '\4'); # int-size
vec_size = np.frombuffer(fd.read(4), dtype='int32', count=1)[0] # vector dim
if vec_size == 0:
return np.array([], dtype='int32')
# Elements from int32 vector are sored in tuples: (sizeof(int32), value),
vec = np.frombuffer(fd.read(vec_size*5), dtype=[('size','int8'),('value','int32')], count=vec_size)
assert(vec[0]['size'] == 4) # int32 size,
ans = vec[:]['value'] # values are in 2nd column,
else: # ascii,
arr = (binary + fd.readline().decode()).strip().split()
try:
arr.remove('['); arr.remove(']') # optionally
except ValueError:
pass
ans = np.array(arr, dtype=int)
if fd is not file_or_fd : fd.close() # cleanup
return ans
# Writing,
def write_vec_int(file_or_fd, output_folder, v, key=''):
""" write_vec_int(f, v, key='')
Write a binary kaldi integer vector to filename or stream.
Arguments:
file_or_fd : filename or opened file descriptor for writing,
v : the vector to be stored,
key (optional) : used for writing ark-file, the utterance-id gets written before the vector.
Example of writing single vector:
kaldi_io.write_vec_int(filename, vec)
Example of writing arkfile:
with open(ark_file,'w') as f:
for key,vec in dict.iteritems():
kaldi_io.write_vec_flt(f, vec, key=key)
"""
fd = open_or_fd(file_or_fd, output_folder, mode='wb')
if sys.version_info[0] == 3: assert(fd.mode == 'wb')
try:
if key != '' : fd.write((key+' ').encode("latin1")) # ark-files have keys (utterance-id),
fd.write('\0B'.encode()) # we write binary!
# dim,
fd.write('\4'.encode()) # int32 type,
fd.write(struct.pack(np.dtype('int32').char, v.shape[0]))
# data,
for i in range(len(v)):
fd.write('\4'.encode()) # int32 type,
fd.write(struct.pack(np.dtype('int32').char, v[i])) # binary,
finally:
if fd is not file_or_fd : fd.close()
#################################################
# Float vectors (confidences, ivectors, ...),
# Reading,
def read_vec_flt_scp(file_or_fd,output_folder):
""" generator(key,mat) = read_vec_flt_scp(file_or_fd)
Returns generator of (key,vector) tuples, read according to kaldi scp.
file_or_fd : scp, gzipped scp, pipe or opened file descriptor.
Iterate the scp:
for key,vec in kaldi_io.read_vec_flt_scp(file):
...
Read scp to a 'dictionary':
d = { key:mat for key,mat in kaldi_io.read_mat_scp(file) }
"""
fd = open_or_fd(file_or_fd,output_folder)
try:
for line in fd:
(key,rxfile) = line.decode().split(' ')
vec = read_vec_flt(rxfile)
yield key, vec
finally:
if fd is not file_or_fd : fd.close()
def read_vec_flt_ark(file_or_fd,output_folder):
""" generator(key,vec) = read_vec_flt_ark(file_or_fd)
Create generator of (key,vector<float>) tuples, reading from an ark file/stream.
file_or_fd : ark, gzipped ark, pipe or opened file descriptor.
Read ark to a 'dictionary':
d = { u:d for u,d in kaldi_io.read_vec_flt_ark(file) }
"""
fd = open_or_fd(file_or_fd,output_folder)
try:
key = read_key(fd)
while key:
ali = read_vec_flt(fd)
yield key, ali
key = read_key(fd)
finally:
if fd is not file_or_fd: fd.close()
def read_vec_flt(file_or_fd,output_folder):
""" [flt-vec] = read_vec_flt(file_or_fd)
Read kaldi float vector, ascii or binary input,
"""
fd = open_or_fd(file_or_fd,output_folder)
binary = fd.read(2).decode()
if binary == '\0B': # binary flag
return _read_vec_flt_binary(fd)
else: # ascii,
arr = (binary + fd.readline().decode()).strip().split()
try:
arr.remove('['); arr.remove(']') # optionally
except ValueError:
pass
ans = np.array(arr, dtype=float)
if fd is not file_or_fd : fd.close() # cleanup
return ans
def _read_vec_flt_binary(fd):
header = fd.read(3).decode()
if header == 'FV ' : sample_size = 4 # floats
elif header == 'DV ' : sample_size = 8 # doubles
else : raise UnknownVectorHeader("The header contained '%s'" % header)
assert (sample_size > 0)
# Dimension,
assert (fd.read(1).decode() == '\4'); # int-size
vec_size = np.frombuffer(fd.read(4), dtype='int32', count=1)[0] # vector dim
if vec_size == 0:
return np.array([], dtype='float32')
# Read whole vector,
buf = fd.read(vec_size * sample_size)
if sample_size == 4 : ans = np.frombuffer(buf, dtype='float32')
elif sample_size == 8 : ans = np.frombuffer(buf, dtype='float64')
else : raise BadSampleSize
return ans
# Writing,
def write_vec_flt(file_or_fd, output_folder, v, key=''):
""" write_vec_flt(f, v, key='')
Write a binary kaldi vector to filename or stream. Supports 32bit and 64bit floats.
Arguments:
file_or_fd : filename or opened file descriptor for writing,
v : the vector to be stored,
key (optional) : used for writing ark-file, the utterance-id gets written before the vector.
Example of writing single vector:
kaldi_io.write_vec_flt(filename, vec)
Example of writing arkfile:
with open(ark_file,'w') as f:
for key,vec in dict.iteritems():
kaldi_io.write_vec_flt(f, vec, key=key)
"""
fd = open_or_fd(file_or_fd,output_folder, mode='wb')
if sys.version_info[0] == 3: assert(fd.mode == 'wb')
try:
if key != '' : fd.write((key+' ').encode("latin1")) # ark-files have keys (utterance-id),
fd.write('\0B'.encode()) # we write binary!
# Data-type,
if v.dtype == 'float32': fd.write('FV '.encode())
elif v.dtype == 'float64': fd.write('DV '.encode())
else: raise UnsupportedDataType("'%s', please use 'float32' or 'float64'" % v.dtype)
# Dim,
fd.write('\04'.encode())
fd.write(struct.pack(np.dtype('uint32').char, v.shape[0])) # dim
# Data,
fd.write(v.tobytes())
finally:
if fd is not file_or_fd : fd.close()
#################################################
# Float matrices (features, transformations, ...),
# Reading,
def read_mat_scp(file_or_fd,output_folder):
""" generator(key,mat) = read_mat_scp(file_or_fd)
Returns generator of (key,matrix) tuples, read according to kaldi scp.
file_or_fd : scp, gzipped scp, pipe or opened file descriptor.
Iterate the scp:
for key,mat in kaldi_io.read_mat_scp(file):
...
Read scp to a 'dictionary':
d = { key:mat for key,mat in kaldi_io.read_mat_scp(file) }
"""
fd = open_or_fd(file_or_fd,output_folder)
try:
for line in fd:
(key,rxfile) = line.decode().split(' ')
mat = read_mat(rxfile,output_folder)
yield key, mat
finally:
if fd is not file_or_fd : fd.close()
def read_mat_ark(file_or_fd,output_folder):
""" generator(key,mat) = read_mat_ark(file_or_fd)
Returns generator of (key,matrix) tuples, read from ark file/stream.
file_or_fd : scp, gzipped scp, pipe or opened file descriptor.
Iterate the ark:
for key,mat in kaldi_io.read_mat_ark(file):
...
Read ark to a 'dictionary':
d = { key:mat for key,mat in kaldi_io.read_mat_ark(file) }
"""
fd = open_or_fd(file_or_fd,output_folder)
try:
key = read_key(fd)
while key:
mat = read_mat(fd,output_folder)
yield key, mat
key = read_key(fd)
finally:
if fd is not file_or_fd : fd.close()
def read_mat(file_or_fd,output_folder):
""" [mat] = read_mat(file_or_fd)
Reads single kaldi matrix, supports ascii and binary.
file_or_fd : file, gzipped file, pipe or opened file descriptor.
"""
fd = open_or_fd(file_or_fd,output_folder)
try:
binary = fd.read(2).decode()
if binary == '\0B' :
mat = _read_mat_binary(fd)
else:
assert(binary == ' [')
mat = _read_mat_ascii(fd)
finally:
if fd is not file_or_fd: fd.close()
return mat
def _read_mat_binary(fd):
# Data type
header = fd.read(3).decode()
# 'CM', 'CM2', 'CM3' are possible values,
if header.startswith('CM'): return _read_compressed_mat(fd, header)
elif header == 'FM ': sample_size = 4 # floats
elif header == 'DM ': sample_size = 8 # doubles
else: raise UnknownMatrixHeader("The header contained '%s'" % header)
assert(sample_size > 0)
# Dimensions
s1, rows, s2, cols = np.frombuffer(fd.read(10), dtype='int8,int32,int8,int32', count=1)[0]
# Read whole matrix
buf = fd.read(rows * cols * sample_size)
if sample_size == 4 : vec = np.frombuffer(buf, dtype='float32')
elif sample_size == 8 : vec = np.frombuffer(buf, dtype='float64')
else : raise BadSampleSize
mat = np.reshape(vec,(rows,cols))
return mat
def _read_mat_ascii(fd):
rows = []
while 1:
line = fd.readline().decode()
if (len(line) == 0) : raise BadInputFormat # eof, should not happen!
if len(line.strip()) == 0 : continue # skip empty line
arr = line.strip().split()
if arr[-1] != ']':
rows.append(np.array(arr,dtype='float32')) # not last line
else:
rows.append(np.array(arr[:-1],dtype='float32')) # last line
mat = np.vstack(rows)
return mat
def _read_compressed_mat(fd, format):
""" Read a compressed matrix,
see: https://github.com/kaldi-asr/kaldi/blob/master/src/matrix/compressed-matrix.h
methods: CompressedMatrix::Read(...), CompressedMatrix::CopyToMat(...),
"""
assert(format == 'CM ') # The formats CM2, CM3 are not supported...
# Format of header 'struct',
global_header = np.dtype([('minvalue','float32'),('range','float32'),('num_rows','int32'),('num_cols','int32')]) # member '.format' is not written,
per_col_header = np.dtype([('percentile_0','uint16'),('percentile_25','uint16'),('percentile_75','uint16'),('percentile_100','uint16')])
# Read global header,
globmin, globrange, rows, cols = np.frombuffer(fd.read(16), dtype=global_header, count=1)[0]
# The data is structed as [Colheader, ... , Colheader, Data, Data , .... ]
# { cols }{ size }
col_headers = np.frombuffer(fd.read(cols*8), dtype=per_col_header, count=cols)
col_headers = np.array([np.array([x for x in y]) * globrange * 1.52590218966964e-05 + globmin for y in col_headers], dtype=np.float32)
data = np.reshape(np.frombuffer(fd.read(cols*rows), dtype='uint8', count=cols*rows), newshape=(cols,rows)) # stored as col-major,
mat = np.zeros((cols,rows), dtype='float32')
p0 = col_headers[:, 0].reshape(-1, 1)
p25 = col_headers[:, 1].reshape(-1, 1)
p75 = col_headers[:, 2].reshape(-1, 1)
p100 = col_headers[:, 3].reshape(-1, 1)
mask_0_64 = (data <= 64)
mask_193_255 = (data > 192)
mask_65_192 = (~(mask_0_64 | mask_193_255))
mat += (p0 + (p25 - p0) / 64. * data) * mask_0_64.astype(np.float32)
mat += (p25 + (p75 - p25) / 128. * (data - 64)) * mask_65_192.astype(np.float32)
mat += (p75 + (p100 - p75) / 63. * (data - 192)) * mask_193_255.astype(np.float32)
return mat.T # transpose! col-major -> row-major,
# Writing,
def write_mat(output_folder,file_or_fd, m, key=''):
""" write_mat(f, m, key='')
Write a binary kaldi matrix to filename or stream. Supports 32bit and 64bit floats.
Arguments:
file_or_fd : filename of opened file descriptor for writing,
m : the matrix to be stored,
key (optional) : used for writing ark-file, the utterance-id gets written before the matrix.
Example of writing single matrix:
kaldi_io.write_mat(filename, mat)
Example of writing arkfile:
with open(ark_file,'w') as f:
for key,mat in dict.iteritems():
kaldi_io.write_mat(f, mat, key=key)
"""
fd = open_or_fd(file_or_fd, output_folder, mode='wb')
if sys.version_info[0] == 3: assert(fd.mode == 'wb')
try:
if key != '' : fd.write((key+' ').encode("latin1")) # ark-files have keys (utterance-id),
fd.write('\0B'.encode()) # we write binary!
# Data-type,
if m.dtype == 'float32': fd.write('FM '.encode())
elif m.dtype == 'float64': fd.write('DM '.encode())
else: raise UnsupportedDataType("'%s', please use 'float32' or 'float64'" % m.dtype)
# Dims,
fd.write('\04'.encode())
fd.write(struct.pack(np.dtype('uint32').char, m.shape[0])) # rows
fd.write('\04'.encode())
fd.write(struct.pack(np.dtype('uint32').char, m.shape[1])) # cols
# Data,
fd.write(m.tobytes())
finally:
if fd is not file_or_fd : fd.close()
#################################################
# 'Posterior' kaldi type (posteriors, confusion network, nnet1 training targets, ...)
# Corresponds to: vector<vector<tuple<int,float> > >
# - outer vector: time axis
# - inner vector: records at the time
# - tuple: int = index, float = value
#
def read_cnet_ark(file_or_fd,output_folder):
""" Alias of function 'read_post_ark()', 'cnet' = confusion network """
return read_post_ark(file_or_fd,output_folder)
def read_post_rxspec(file_):
""" adaptor to read both 'ark:...' and 'scp:...' inputs of posteriors,
"""
if file_.startswith("ark:"):
return read_post_ark(file_)
elif file_.startswith("scp:"):
return read_post_scp(file_)
else:
print("unsupported intput type: %s" % file_)
print("it should begint with 'ark:' or 'scp:'")
sys.exit(1)
def read_post_scp(file_or_fd,output_folder):
""" generator(key,post) = read_post_scp(file_or_fd)
Returns generator of (key,post) tuples, read according to kaldi scp.
file_or_fd : scp, gzipped scp, pipe or opened file descriptor.
Iterate the scp:
for key,post in kaldi_io.read_post_scp(file):
...
Read scp to a 'dictionary':
d = { key:post for key,post in kaldi_io.read_post_scp(file) }
"""
fd = open_or_fd(file_or_fd,output_folder)
try:
for line in fd:
(key,rxfile) = line.decode().split(' ')
post = read_post(rxfile)
yield key, post
finally:
if fd is not file_or_fd : fd.close()
def read_post_ark(file_or_fd,output_folder):
""" generator(key,vec<vec<int,float>>) = read_post_ark(file)
Returns generator of (key,posterior) tuples, read from ark file.
file_or_fd : ark, gzipped ark, pipe or opened file descriptor.
Iterate the ark:
for key,post in kaldi_io.read_post_ark(file):
...
Read ark to a 'dictionary':
d = { key:post for key,post in kaldi_io.read_post_ark(file) }
"""
fd = open_or_fd(file_or_fd,output_folder)
try:
key = read_key(fd)
while key:
post = read_post(fd)
yield key, post
key = read_key(fd)
finally:
if fd is not file_or_fd: fd.close()
def read_post(file_or_fd,output_folder):
""" [post] = read_post(file_or_fd)
Reads single kaldi 'Posterior' in binary format.
The 'Posterior' is C++ type 'vector<vector<tuple<int,float> > >',
the outer-vector is usually time axis, inner-vector are the records
at given time, and the tuple is composed of an 'index' (integer)
and a 'float-value'. The 'float-value' can represent a probability
or any other numeric value.
Returns vector of vectors of tuples.
"""
fd = open_or_fd(file_or_fd,output_folder)
ans=[]
binary = fd.read(2).decode(); assert(binary == '\0B'); # binary flag
assert(fd.read(1).decode() == '\4'); # int-size
outer_vec_size = np.frombuffer(fd.read(4), dtype='int32', count=1)[0] # number of frames (or bins)
# Loop over 'outer-vector',
for i in range(outer_vec_size):
assert(fd.read(1).decode() == '\4'); # int-size
inner_vec_size = np.frombuffer(fd.read(4), dtype='int32', count=1)[0] # number of records for frame (or bin)
data = np.frombuffer(fd.read(inner_vec_size*10), dtype=[('size_idx','int8'),('idx','int32'),('size_post','int8'),('post','float32')], count=inner_vec_size)
assert(data[0]['size_idx'] == 4)
assert(data[0]['size_post'] == 4)
ans.append(data[['idx','post']].tolist())
if fd is not file_or_fd: fd.close()
return ans
#################################################
# Kaldi Confusion Network bin begin/end times,
# (kaldi stores CNs time info separately from the Posterior).
#
def read_cntime_ark(file_or_fd,output_folder):
""" generator(key,vec<tuple<float,float>>) = read_cntime_ark(file_or_fd)
Returns generator of (key,cntime) tuples, read from ark file.
file_or_fd : file, gzipped file, pipe or opened file descriptor.
Iterate the ark:
for key,time in kaldi_io.read_cntime_ark(file):
...
Read ark to a 'dictionary':
d = { key:time for key,time in kaldi_io.read_post_ark(file) }
"""
fd = open_or_fd(file_or_fd,output_folder)
try:
key = read_key(fd)
while key:
cntime = read_cntime(fd)
yield key, cntime
key = read_key(fd)
finally:
if fd is not file_or_fd : fd.close()
def read_cntime(file_or_fd,output_folder):
""" [cntime] = read_cntime(file_or_fd)
Reads single kaldi 'Confusion Network time info', in binary format:
C++ type: vector<tuple<float,float> >.
(begin/end times of bins at the confusion network).
Binary layout is '<num-bins> <beg1> <end1> <beg2> <end2> ...'
file_or_fd : file, gzipped file, pipe or opened file descriptor.
Returns vector of tuples.
"""
fd = open_or_fd(file_or_fd,output_folder)
binary = fd.read(2).decode(); assert(binary == '\0B'); # assuming it's binary
assert(fd.read(1).decode() == '\4'); # int-size
vec_size = np.frombuffer(fd.read(4), dtype='int32', count=1)[0] # number of frames (or bins)
data = np.frombuffer(fd.read(vec_size*10), dtype=[('size_beg','int8'),('t_beg','float32'),('size_end','int8'),('t_end','float32')], count=vec_size)
assert(data[0]['size_beg'] == 4)
assert(data[0]['size_end'] == 4)
ans = data[['t_beg','t_end']].tolist() # Return vector of tuples (t_beg,t_end),
if fd is not file_or_fd : fd.close()
return ans
#################################################
# Segments related,
#
# Segments as 'Bool vectors' can be handy,
# - for 'superposing' the segmentations,
# - for frame-selection in Speaker-ID experiments,
def read_segments_as_bool_vec(segments_file):
""" [ bool_vec ] = read_segments_as_bool_vec(segments_file)
using kaldi 'segments' file for 1 wav, format : '<utt> <rec> <t-beg> <t-end>'
- t-beg, t-end is in seconds,
- assumed 100 frames/second,
"""
segs = np.loadtxt(segments_file, dtype='object,object,f,f', ndmin=1)
# Sanity checks,
assert(len(segs) > 0) # empty segmentation is an error,
assert(len(np.unique([rec[1] for rec in segs ])) == 1) # segments with only 1 wav-file,
# Convert time to frame-indexes,
start = np.rint([100 * rec[2] for rec in segs]).astype(int)
end = np.rint([100 * rec[3] for rec in segs]).astype(int)
# Taken from 'read_lab_to_bool_vec', htk.py,
frms = np.repeat(np.r_[np.tile([False,True], len(end)), False],
np.r_[np.c_[start - np.r_[0, end[:-1]], end-start].flat, 0])
assert np.sum(end-start) == np.sum(frms)
return frms