-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRewardfunctions.py
45 lines (33 loc) · 1.57 KB
/
Rewardfunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from fairnessMetrics import disparateMistreatment, equal_opportunity, equalized_odds, disparateImpact
def stat_parity(ts_s, ts_pred, ts_c=None, verbose=False):
r_0, r_1 = disparateImpact(ts_s, ts_pred)
if r_0 == 0 or r_1 == 0:
return None
return min(r_0/r_1, r_1/r_0)
def diff_FPR(ts_s, ts_pred, ts_c):
fpr_0, fnr_0, fpr_1, fnr_1 = disparateMistreatment(ts_s, ts_pred, ts_c)
return 1-abs(fpr_0 - fpr_1)
def diff_FNR(ts_s, ts_pred, ts_c):
fpr_0, fnr_0, fpr_1, fnr_1 = disparateMistreatment(ts_s, ts_pred, ts_c)
return 1-abs(fnr_0 - fnr_1)
def diff_FPR_FNR(ts_s, ts_pred, ts_c, verbose=False):
fpr_0, fnr_0, fpr_1, fnr_1 = disparateMistreatment(ts_s, ts_pred, ts_c)
#print(f'false positive rate class 0: {fpr_0}')
#print(f'false positive rate class 1: {fpr_1}')
#print(f'false negative rate class 0: {fnr_0}')
#print(f'false negative rate class 1: {fnr_1}')
if verbose:
return abs(fnr_0 - fnr_1) + abs(fpr_0 - fpr_1)
return (1 - abs(fnr_0 - fnr_1)) + (1 - abs(fpr_0 - fpr_1))
def diff_Eoppr(ts_s, ts_pred, ts_c, verbose=False):
tpr_0, tpr_1 = equal_opportunity(ts_s, ts_pred, ts_c)
#print(f'true positive rate class 0: {tpr_0}')
#print(f'true positive rate class 1: {tpr_1}')
if verbose:
return abs(tpr_0 - tpr_1)
return 1 - abs(tpr_0 - tpr_1)
def diff_Eodd(ts_s, ts_pred, ts_c, verbose=False):
tpr_0, tpr_1, fpr_0, fpr_1 = equalized_odds(ts_s, ts_pred, ts_c)
if verbose:
return abs(tpr_0 - tpr_1) + abs(fpr_0 - fpr_1)
return (1 - abs(tpr_0 - tpr_1)) + (1 - abs(fpr_0 - fpr_1))