forked from PixArt-alpha/PixArt-alpha
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp_controlnet.py
475 lines (432 loc) · 18.1 KB
/
app_controlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
#!/usr/bin/env python
from __future__ import annotations
import argparse
import os
import random
import sys
import uuid
from datetime import datetime
from pathlib import Path
from typing import List, Tuple, Union
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent))
import gradio as gr
import numpy as np
import torch
from PIL import Image as PILImage
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from torchvision.utils import _log_api_usage_once, make_grid, save_image
from diffusers import PixArtAlphaPipeline
from diffusion import DPMS, SASolverSampler
from diffusion.data.datasets import *
from diffusion.model.hed import HEDdetector
from diffusion.model.nets import PixArt_XL_2, PixArtMS_XL_2, ControlPixArtHalf, ControlPixArtMSHalf
from diffusion.model.utils import resize_and_crop_tensor
from diffusion.utils.misc import read_config
from tools.download import find_model
DESCRIPTION = """![Logo](https://raw.githubusercontent.com/PixArt-alpha/PixArt-alpha.github.io/master/static/images/logo.png)
# PixArt-Delta (ControlNet)
#### [PixArt-Alpha 1024px](https://github.com/PixArt-alpha/PixArt-alpha) is a transformer-based text-to-image diffusion system trained on text embeddings from T5.
#### This demo uses the [PixArt-alpha/PixArt-XL-2-1024-ControlNet](https://huggingface.co/PixArt-alpha/PixArt-ControlNet/tree/main) checkpoint.
#### This demo uses the [PixArt-alpha/PixArt-XL-2-512-ControlNet](https://huggingface.co/PixArt-alpha/PixArt-ControlNet/tree/main) checkpoint.
#### English prompts ONLY; 提示词仅限英文
### <span style='color: red;'>Please use the image size corresponding to the model as input to get the best performance. (eg. 1024px for PixArt-XL-2-1024-ControlNet.pth)
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU �� This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
PORT = int(os.getenv("DEMO_PORT", "15432"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
@torch.no_grad()
def ndarr_image(tensor: Union[torch.Tensor, List[torch.Tensor]], **kwargs, ) -> None:
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(save_image)
grid = make_grid(tensor, **kwargs)
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
return ndarr
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
SCHEDULE_NAME = ["DPM-Solver", "SA-Solver"]
DEFAULT_SCHEDULE_NAME = "DPM-Solver"
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
def save_image(img):
unique_name = str(uuid.uuid4()) + '.png'
save_path = os.path.join(f'output/online_demo_img/{datetime.now().date()}')
os.makedirs(save_path, exist_ok=True)
unique_name = os.path.join(save_path, unique_name)
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@torch.inference_mode()
def generate(
prompt: str,
given_image = None,
negative_prompt: str = "",
style: str = DEFAULT_STYLE_NAME,
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
schedule: str = 'DPM-Solver',
dpms_guidance_scale: float = 4.5,
sas_guidance_scale: float = 3,
dpms_inference_steps: int = 14,
sas_inference_steps: int = 25,
randomize_seed: bool = False,
):
seed = int(randomize_seed_fn(seed, randomize_seed))
torch.manual_seed(seed)
torch.cuda.empty_cache()
strength = 1.0
c_vis = given_image
if not use_negative_prompt:
negative_prompt = None # type: ignore
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask\
= pipe.encode_prompt(prompt=prompt, negative_prompt=negative_prompt)
prompt_embeds, negative_prompt_embeds = prompt_embeds[:, None], negative_prompt_embeds[:, None]
torch.cuda.empty_cache()
# condition process
if given_image is not None:
ar = torch.tensor([given_image.size[1] / given_image.size[0]], device=device)[None]
custom_hw = torch.tensor([given_image.size[1], given_image.size[0]], device=device)[None]
closest_hw = base_ratios[min(base_ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))]
hw = torch.tensor(closest_hw, device=device)[None]
condition_transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB')),
T.Resize(int(min(closest_hw))),
T.CenterCrop([int(closest_hw[0]), int(closest_hw[1])]),
T.ToTensor(),
])
given_image = condition_transform(given_image).unsqueeze(0).to(device)
hed_edge = hed(given_image) * strength
hed_edge = TF.normalize(hed_edge, [.5], [.5])
hed_edge = hed_edge.repeat(1, 3, 1, 1).to(weight_dtype)
posterior = vae.encode(hed_edge).latent_dist
condition = posterior.sample()
c = condition * config.scale_factor
c_vis = vae.decode(condition)['sample']
c_vis = torch.clamp(127.5 * c_vis + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()[0]
else:
c = None
ar = torch.tensor([int(height) / int(width)], device=device)[None]
custom_hw = torch.tensor([int(height), int(width)], device=device)[None]
closest_hw = base_ratios[min(base_ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))]
hw = torch.tensor(closest_hw, device=device)[None]
latent_size_h, latent_size_w = int(hw[0, 0] // 8), int(hw[0, 1] // 8)
# Sample images:
if schedule == 'DPM-Solver':
# Create sampling noise:
n = prompt_embeds.shape[0]
z = torch.randn(n, 4, latent_size_h, latent_size_w, device=device)
model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=prompt_attention_mask, c=c)
dpm_solver = DPMS(model.forward_with_dpmsolver,
condition=prompt_embeds,
uncondition=negative_prompt_embeds,
cfg_scale=dpms_guidance_scale,
model_kwargs=model_kwargs)
samples = dpm_solver.sample(
z,
steps=dpms_inference_steps,
order=2,
skip_type="time_uniform",
method="multistep",
).to(weight_dtype)
elif schedule == "SA-Solver":
# Create sampling noise:
n = prompt_embeds.shape[0]
model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=prompt_attention_mask, c=c)
sas_solver = SASolverSampler(model.forward_with_dpmsolver, device=device)
samples = sas_solver.sample(
S=sas_inference_steps,
batch_size=n,
shape=(4, latent_size_h, latent_size_w),
eta=1,
conditioning=prompt_embeds,
unconditional_conditioning=negative_prompt_embeds,
unconditional_guidance_scale=sas_guidance_scale,
model_kwargs=model_kwargs,
)[0].to(weight_dtype)
samples = vae.decode(samples / config.scale_factor).sample
torch.cuda.empty_cache()
samples = resize_and_crop_tensor(samples, custom_hw[0, 1], custom_hw[0, 0])
samples = PILImage.fromarray(ndarr_image(samples, normalize=True, value_range=(-1, 1)))
image_paths = [save_image(samples)]
c_vis = PILImage.fromarray(c_vis) if c_vis is not None else samples
c_paths = [save_image(c_vis)]
print(image_paths)
return image_paths, c_paths, seed
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("config", type=str, help="config")
parser.add_argument('--image_size', default=1024, type=int)
parser.add_argument('--model_path', type=str)
return parser.parse_args()
args = get_args()
config = read_config(args.config)
device = "cuda" if torch.cuda.is_available() else "cpu"
assert args.image_size in [512, 1024], "We only provide pre-trained models for 512x512 and 1024x1024 resolutions."
lewei_scale = {512: 1, 1024: 2}
latent_size = args.image_size // 8
weight_dtype = torch.float16
print(f"Inference with {weight_dtype}")
if torch.cuda.is_available():
hed = HEDdetector(False).to(device)
pipe = PixArtAlphaPipeline.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
transformer=None,
torch_dtype=weight_dtype,
use_safetensors=True,
)
pipe.to(device)
print("Loaded on Device!")
vae = pipe.vae
text_encoder = pipe.text_encoder
tokenizer = pipe.tokenizer
assert args.image_size == config.image_size
if config.image_size == 512:
model = PixArt_XL_2(input_size=latent_size, lewei_scale=lewei_scale[config.image_size])
print('model architecture ControlPixArtHalf and image size is 512')
model = ControlPixArtHalf(model).to(device)
elif config.image_size == 1024:
model = PixArtMS_XL_2(input_size=latent_size, lewei_scale=lewei_scale[config.image_size])
print('model architecture ControlPixArtMSHalf and image size is 1024')
model = ControlPixArtMSHalf(model).to(device)
state_dict = find_model(args.model_path)['state_dict']
if 'pos_embed' in state_dict:
del state_dict['pos_embed']
elif 'base_model.pos_embed' in state_dict:
del state_dict['base_model.pos_embed']
missing, unexpected = model.load_state_dict(state_dict, strict=False)
print('Missing keys (missing pos_embed is normal): ', missing)
print('Unexpected keys', unexpected)
model.eval()
model.to(weight_dtype)
base_ratios = eval(f'ASPECT_RATIO_{args.image_size}_TEST')
with gr.Blocks(css="app/style_controlnet.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
image_input = gr.Image(
label="Image",
height=360,
width=360,
show_label=False,
sources="upload",
type="pil",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Group():
with gr.Row():
hed_result = gr.Gallery(label="Hed Result", show_label=False)
result = gr.Gallery(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
schedule = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=SCHEDULE_NAME,
value=DEFAULT_SCHEDULE_NAME,
label="Sampler Schedule",
visible=True,
)
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Image Style",
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=config.image_size,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=config.image_size,
)
with gr.Row():
dpms_guidance_scale = gr.Slider(
label="DPM-Solver Guidance scale",
minimum=1,
maximum=10,
step=0.1,
value=4.5,
)
dpms_inference_steps = gr.Slider(
label="DPM-Solver inference steps",
minimum=5,
maximum=40,
step=1,
value=14,
)
with gr.Row():
sas_guidance_scale = gr.Slider(
label="SA-Solver Guidance scale",
minimum=1,
maximum=10,
step=0.1,
value=3,
)
sas_inference_steps = gr.Slider(
label="SA-Solver inference steps",
minimum=10,
maximum=40,
step=1,
value=25,
)
gr.Examples(
examples=[
[
"anime superman in action",
"asset/images/controlnet/0_0.png",
],
[
"illustration of A loving couple standing in the open kitchen of the living room, cooking ,Couples have a full body, with characters accounting for a quarter of the screen, and the composition of the living room has a large perspective, resulting in a larger space.",
"asset/images/controlnet/0_3.png",
],
[
"A Electric 4 seats mini VAN,simple design stylel,led headlight,front 45 angle view,sunlight,clear sky.",
"asset/images/controlnet/0_2.png",
],
],
inputs=[prompt, image_input],
outputs=[result, hed_result, seed],
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
image_input,
negative_prompt,
style_selection,
use_negative_prompt,
seed,
width,
height,
schedule,
dpms_guidance_scale,
sas_guidance_scale,
dpms_inference_steps,
sas_inference_steps,
randomize_seed,
],
outputs=[result, hed_result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=PORT, debug=True)