We incorporate a ControlNet-like(https://github.com/lllyasviel/ControlNet) module enables fine-grained control over text-to-image diffusion models. We introduce a novel ControlNet-Transformer architecture, specifically tailored for Transformers, achieving explicit controllability alongside high-quality image generation.
For more details about PixArt-ControlNet, please check the technical report PixArt-δ.
# Train on 1024px
python -m torch.distributed.launch --nproc_per_node=2 --master_port=12345 train_scripts/train_controlnet.py configs/pixart_app_config/PixArt_xl2_img1024_controlHed.py --work-dir output/pixartcontrolnet-xl2-img1024
# Train on 512px
python -m torch.distributed.launch --nproc_per_node=2 --master_port=12345 train_scripts/train_controlnet.py configs/pixart_app_config/PixArt_xl2_img512_controlHed.py --work-dir output/pixartcontrolnet-xl2-img512
# Test on 1024px
DEMO_PORT= 12345 python app/app_controlnet.py configs/pixart_app_config/PixArt_xl2_img1024_controlHed.py --model_path path/to/1024px/PixArt-XL-2-1024-ControlNet.pth
# Test on 512px
DEMO_PORT= 12345 python app/app_controlnet.py configs/pixart_app_config/PixArt_xl2_img512_controlHed.py --model_path path/to/512px/pixart_controlnet_ckpt
Then have a look at a simple example using the http://your-server-ip:12345